The Dawn of Multi-Line Intensity Mapping **Sarah Libanore**

LIM25, Annecy, June 5th 2025

Ben Gurion University of the Negev

- How to probe the *beginning* of reionization?
- How does it depend on astrophysical and cosmological *models*?

- How to probe the *beginning* of reionization?
- How does it depend on astrophysical and cosmological *models*?

LIM25, Annecy, June 5th 2025

Consistent Modeling of Multi-Line **Cross-Correlations**

- How to probe the *beginning* of reionization?
- How does it depend on astrophysical and cosmological *models*?

LIM25, Annecy, June 5th 2025

Consistent Modeling of Multi-Line **Cross-Correlations**

Simulations Physical models

LIM25, Annecy, June 5th 2025

Simulations Physical models

LIM25, Annecy, June 5th 2025

Simulations Physical models • Physical modeling

LIM25, Annecy, June 5th 2025

- Approximations
- Usually calibrated at low z

Simulations Physical models

• Physical modeling

- Computational cost
- Multi scale problem
- Beyond ACDM cosmology?

Analytics Empirical models • Fast exploration of a wide parameter space

- Approximations
- Usually calibrated at low z

Simulations Physical models

• Physical modeling

- Computational cost
- Multi scale problem
- Beyond ACDM cosmology?

- Fast exploration of a wide parameter space
- Approximations
- Usually calibrated at low z

Libanore, Munoz, Kovetz, 2506.xxxxx

• Effective Model for Cosmic Dawn 21cm

Munoz, MNRAS 523 (2023) Cruz, Munoz et al., 2407.18294 (2024)

Libanore, Munoz, Kovetz, 2506.xxxxx

COSMOLOGY

- Interfaced with CLASS •
- Linear evolution of density perturbations •
- EPS formalism for local Halo Mass Function • •

$$P_m(k,z), \ \frac{dn}{dM_h}(\delta_R)$$

STAR FORMATION RATE

- Computed from SFR-halo mass relation
- Default based on UV luminosity function
- Easy to customize

$$\dot{\rho}_*(\delta_R) = \int dM_h \frac{dn}{dM_h} dR_h$$

• Effective Model for Cosmic Dawn 21cm

Munoz, MNRAS 523 (2023) Cruz, Munoz et al., 2407.18294 (2024)

Libanore, Munoz, Kovetz, 2506.xxxx

LIM25, Annecy, June 5th 2025

 δ_R) $\dot{M}(M_h)$

LINE LUMINOSITY

- Default models for OIII, OII, Ha, Hb, CII, CO
- Stochasticity
- Easy to customize

 $\rho_L(\delta_R) = \int dM_h \frac{dn}{dM_h} (\delta_R) L(\dot{M}_*) p(L(\dot{M}_*)|M_h)$

Cross-Correlation Coefficients

-1e+01

Cross-Correlation Coefficients

One-point (Pearson) $P = \frac{\sum_{i,j} \left(T_{21}^{ij} - \overline{T}_{21} \right) \left(T_{\nu}^{ij} - \overline{T}_{\nu} \right)}{\sqrt{\sum_{i,j} \left(T_{21}^{ij} - \overline{T}_{21} \right)^2 \sum_{i,j} \left(T_{\nu}^{ij} - \overline{T}_{\nu} \right)^2}}$

Probing the beginning of reionization

$$P = \frac{\sum_{i,j} \left(T_{21}^{ij} - \overline{T}_{21} \right) \left(T_{\nu}^{ij} - \overline{T}_{\nu} \right)}{\sqrt{\sum_{i,j} \left(T_{21}^{ij} - \overline{T}_{21} \right)^2 \sum_{i,j} \left(T_{\nu}^{ij} - \overline{T}_{\nu} \right)^2}}$$

$$r = \frac{\Delta_{21,\text{LIM}}^2(k,z)}{\sqrt{\Delta_{21}^2(k,z)\Delta_{\text{LIM}}^2(k,z)}}$$

Probing the beginning of reionization

$$P = \frac{\sum_{i,j} \left(T_{21}^{ij} - \overline{T}_{21} \right) \left(T_{\nu}^{ij} - \overline{T}_{\nu} \right)}{\sqrt{\sum_{i,j} \left(T_{21}^{ij} - \overline{T}_{21} \right)^2 \sum_{i,j} \left(T_{\nu}^{ij} - \overline{T}_{\nu} \right)^2}}$$

$$r = \frac{\Delta_{21,\text{LIM}}^2(k,z)}{\sqrt{\Delta_{21}^2(k,z)\Delta_{\text{LIM}}^2(k,z)}}$$

Thank you for your attention & keep an eye on the arXiv!

LIM25, Annecy, June 5th 2025

Libanore, Munoz, Kovetz, 2506.xxxxx **slibanore/oLIMpus**

Sarah Libanore

Ben Gurion University of the Negev

Backup Slides

An Effective Model for the 21-cm Signal

$$\langle e^{\gamma_{R_1}\delta_{R_1}}e^{\gamma_{R_2}\delta_{R_2}}\rangle = e^{\gamma_{R_1}\gamma_{R_2}\xi_{R_1R_2}(r,z)} - 1$$

$$T_{21} = T_0(z) \left(1 + \delta - \delta_v\right) \left(\frac{x_\alpha}{1 + x_\alpha}\right) \left(1 - \frac{T_{\text{CMB}}}{T_k}\right) x_H$$
$$x_\alpha \propto J_\alpha(x, z)$$

Model the Lyman- α flux:

$$J_{\alpha}(x,z) = \frac{(1+z)^2}{4\pi} \int dR \operatorname{SFRD}(\delta_R(x),R) \epsilon_{\alpha}(v')$$

$$x_{\alpha} = \underline{c_{1,\alpha}(z)}_{R} \sum_{R} \underline{c_{2,\alpha}(z,R)} e^{\gamma_{R}\delta_{R}}$$

 $\xi_{\alpha}(r,z) = c_{1,\alpha}^{2}(z) \sum c_{2,\alpha}(z,R_{1})c_{2,\alpha}(z,R_{2}) \left[e^{\gamma_{R_{1}}\gamma_{R_{2}}\xi_{R_{1}R_{2}}(r,z)} - 1 \right]$ R_{1}, R_{2}

LIM25, Annecy, June 5th 2025

Munoz, Mon.Not.Roy.Astron.Soc. 523 (2023) Cruz, Munoz et al., 2407.18294 (2024) Sklansky, Munoz, in prep. (2025) Libanore, Munoz, Kovetz, in prep. (2025)

 $\Delta_{21}^{2}(k,z)$ $\rightarrow \xi_{21}(r,z)$ during cosmic dawn $T_{21} = T_0(z) \left(1 + \delta - \delta_v\right) \left(\frac{x_\alpha}{1 + x_\alpha}\right) \left(1 - \frac{T_{\text{CMB}}}{T_k}\right) x_H$ SFRD - $\overline{\text{SFRD}}(z) = \int dM_h \; \frac{dn(z)}{dM_h} \dot{M}_*(M_h, z)$ $SFRD(\delta_{R}, z) = (1 + \delta_{R}) \int dM_{h} \frac{dn_{EPS}(\delta_{R}, z)}{dM_{h}} \frac{\langle e^{\gamma_{R_{1}}\delta_{R_{1}}(x_{1})}e^{\gamma_{R_{2}}\delta_{R_{2}}(x_{2})} \rangle - \langle e^{\gamma_{R_{1}}\delta_{R_{1}}(x)} \rangle^{2} = e^{\gamma_{R_{1}}\gamma_{R_{2}}\xi_{12}(r,z)} - 1$

Key approximation: SFRD(δ_R, z) = $\overline{\text{SFRD}}(z)e^{\gamma_R\delta_R}$

LIM25, Annecy, June 5th 2025

Munoz, Mon.Not.Roy.Astron.Soc. 523 (2023) Cruz, Munoz et al., 2407.18294 (2024) Sklansky, Munoz, in prep. (2025) Libanore, Munoz, Kovetz, in prep. (2025)

Maps from Zeus21

Epoch of Reionization: bubble model on maps (for now!)

$$\overline{T}_{21}(z) + \text{IFT} \begin{bmatrix} \frac{P_{21\Delta}(k,z)}{P_{\Delta\Delta}(k,z)} \\ \delta(x,z) > \delta_B(x,z) > \delta_B(x,z) \\ \delta_B = \min \delta : n_{\gamma}(\delta) - (1 \\ 150 \\ 100 \\ 50 \end{bmatrix}$$

50100LIM25, Annecy, June 5th 2025

 $\delta_{21}(x,z)$

Maps and Cross Correlation Study

Correlation Coefficient

$$r = \frac{\Delta_{21,\text{LIM}}^2(k,z)}{\sqrt{\Delta_{21}^2(k,z)\Delta_{\text{LIM}}^2(k,z)}}$$

LIM25, Annecy, June 5th 2025

0e + 00

PRELIMINARY!

Main Outputs

- Analytical and in-box auto-power spectra

LIM25, Annecy, June 5th 2025

• Analytical and in-box cross-power spectra

Comparison with other codes

Libanore, Munoz, Kovetz, 2506.xxxx

of coming eys	SPHEREx Coherent treatment of multiple lines and multiple channels

Probe of Reionization

simulation-based models

Reach out for new ideas! (1)

Variability on astro and cosmo models?

Sabti, Munoz, Blas, Phys.Rev.D 105 (2022) 4, 043518

