

Université

de Strasbourg

PICSEL

Jeremy Andrea, Jérôme Baudot, Auguste Besson, **<u>Ziad El Bitar</u>**, Ajit Kumar, Emmanuel Medernach, Meena Meena, Gaëlle Sadowski, Serhiy Senyukov

OUR ACTIVITIES

Simulation

Instrumentation :

- CMOS R&D (lightweight, highly granular)
- Mechanics and integration

Phenomenology

WHAT DOES A COLLISION LOOK LIKE

MOTIVATION FOR AN ELECTRON-POSITON COLLIDER

CLIC @ CERN √smax =380-3000 GeV

Linear Collider

FCC-ee @ CERN √smax =240-365 GeV

Circular Collider

ILC in Japan √smax =250-1000 GeV

CEPC in China √smax =240-360 GeV

THE FUTURE CIRCULAR COLLIDER (FCC)

AMBITION PHYSICS STUDIES

M. Selvaggi, FCC Week 2023

WHILE WAITING: 5, 10, 15 YEARS ... NEED FOR MILESTONES PROJECTS

TIME RESOLUTION SCALE IN THE CONTEXT OF ELECTRON POSITRON COLLIDER

OUR ACTIVITIES

Simulation

Instrumentation :

- CMOS R&D (lightweight, highly granular)
- Mechanics and integration

Strong collaboration with

C4PI-Platform

 $= \underbrace{\sum_{i=1}^{N} \underbrace{\sum_{i=1}^{N$

Phenomenology

THE MIMOSIS PROJECT – A MILESTONE SENSOR FOR FUTURE COLLIDER'S VERTEX DETECTOR

* Picture displays a Mimosa28 CMOS sensor. Indeed the final CMOS sensor used in the MVD will Mimosis.

Journées scientifiques et techniques de l'IPHC – 14 octobre, 2024

Matrix readout time

Power consumption

 $5 \mu s$ (event driven) 40-70 mW/cm²

MIMOSIS REQUIREMENTS

CHARACTERIZATION OF CMOS SENSORS @ CERN, DESY

AugusteHasanBenMathieu Ali Al-MichaelMathieuBessonDarwishArnoldiGoffetingunDeveauxSpecht

MIMOSIS-2.1 telescope

Experiment room

Vital requirements

EXPLORING NEW TECHNOLOGIES : TPSCO (65 nm)

Journées scientifiques et techniques de l'IPHC – 14 octobre, 2024

S

0

ŝ

CRICUIT **E**XPLORATOIRE-65 nm VARIANTS

Variant	Process	Pitch	Matrix	Sub-matrix	
CE65-A	std	$15 \mu m$	64×32	AC/21, DC/21, SF/22	
CE65-B	mod_gap	$15\mu m$	64×32	AC/21, DC/21, SF/22	
CE65-C	mod	$15\mu m$	64×32	AC/21, DC/21, SF/22	
CE65-D	std	$25 \mu m$	48×32	AC/16, DC/16, SF/16	

BEAM TEST SETUP

Telescope:

Reference Arms : 4 ALPIDE planes for track reconstruction DUT: CE65 TRG : DPTS

Test beam:

May 2022 at CERN-PS

Data acquisition: EUDAQ2 Event reconstruction algorithm and data analysis framework: Corryvreckan

Noise run-Beam run: correlated double sampling method (CDS)

Support provided by Alice Collaboration

PIXEL SIZE IMPACT

PROCESS MODIFICATION IMPACT

PROCESS MODIFICATION : CHARGE SHARING

Charge sharing (std) > Charge sharing (mod)

PROCESS MODIFICATION : SPATIAL RESOLUTION

Residual (std) < Residual (mod)

CE-65 nm (v2) ...

- AC-coupled only
- Three processes variants (STD, GAP, BLANKET)
- Three pixel pitches values (15um, 18um, 22.5um)
- Arrangement variants

- An option for window readout
- Beam tests @ SPS (April 2024) & DESY (May 2024): ongoing data analysis

OUR ACTIVITIES

Instrumentation :

- CMOS R&D (lightweight, highly granular)
- Mechanics and integration

THE DETECTOR CONCEPTS

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system
- Very active community
 - Prototype designs, test beam campaigns, ...

- A design in its infancy
- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

• ...

FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4

FCCee activities @ IPHC : Tracking performance with CLD*

CLD 03 v01: CLD 02 v05 with shrunk Outer Tracker + PID detector

*G. SADOWSKI PhD

 Effect of shrunk Outer Tracker for the add of a PID detector on p_T resolution

FCCee activities @ IPHC : Tracking performance with CLD*

*G. SADOWSKI PhD

CLD 02 v05: VXD spatial resolution = $3 \mu m$

OUR ACTIVITIES

Simulation

Instrumentation :

- CMOS R&D (lightweight, highly granular)
- Mechanics and integration

FCCee activities @ IPHC

$$\Gamma(Z \longrightarrow N_e \,\overline{\nu}_e) = \frac{g_Z^2 \,|V|^2 \,m_Z}{192 \,\pi} \left(\left(1 - \frac{m_N^2}{m_Z^2} \right)^2 + \left(1 - \frac{m_N^2}{m_Z^2} \right) \left(1 - \left| \frac{m_N^4}{m_Z^4} \right) \right) \right)$$

$$\Gamma(W^+ \longrightarrow N_e \,e^+) = \frac{g_W^2 \,|V|^2 \,m_W}{92 \,\pi} \left(\left(1 - \frac{m_N^2}{m_W^2} \right)^2 + \left(1 - \frac{m_N^2}{m_W^2} \right) \left(1 - \frac{m_N^4}{m_W^4} \right) \right)$$

$$\Gamma(h \longrightarrow N_e \,\overline{\nu}_e) = \frac{g_W^2 \,|V|^2}{64 \,\pi \,m_W^2} \,m_N^2 m_h \, \left(1 - \frac{m_N^2}{m_h^2} \right)^2$$

$$* S. \text{ Rejai Internship in collaboration with CMS (E. Conte)}$$

FCCee activities @ IPHC: Mastering the workflow of the feasibility study

- Phenomenology*
- Delphes simulation
- FullSimulation: dd4hep
- Reconstruction: key4hep, Gaudi
- FCCAnalysis

*S. Rejai Internship in collaboration with CMS (E. Conte)

OUR ACTIVITIES

BEAM MONITORING & PROFILING FOR RADIOBIOLOGY

31 mm

MIMOSIS @ CYRCÉ : BEAM MONITORING

Coll. dia. (mm)	l (fA) Cyrce	l (fA) MIMOSIS	Difference	
2	2.9	3.0	4.6%	
3	6.5	6.4	2.4%	
5	17.7	18.7	4.9%	
8	44.9	47.8	6.2%	
10	70.6	71.5	1.1%	
12	100.6	107.4	6.6%	
15	57.1	59.8	4.6%	
16	67.7	72.0	6.3%	
18	80.5	85.1	5.6%	
24	142.9	151.9	6.4%	

DISPERSION ESTIMATION AND HOMOGENEITY

Recons

Uncertainty on diameter (mm)

-7500 -5000 -2500 0 2500 5000 7500 10000 X (μm)									
Distance (mm)	14	60	110	164					
σ (mm)	0,10	0,37	0,75	1,20					
μ1 (mm)	-5,05	-5,10	-5,10	-5,10					
μ2 (mm)	5,02	5,00	5,10	5,00					
structed diameter (mm)	10.07	10.10	10.20	10.10					

0,17

0,11

0,22

0,28

MIMOSIS @ CYRCÉ : READOUT CAPABILITY

- Saturation level depends on the cluster multiplicity as expected.
- Max bandwidth at around 18 MHz/cm² Average 15, max 70 MHz/cm²
- Reminder : there is two outputs on used chips, not 8 \rightarrow 18 MHz/cm² x 4 = 72 MHz/cm²

Thanks for your attention