MM & GW: challenges & significant results

ASI

Cosmic

Explorer

M. Branchesi Gran Sasso Science Institute INFN/INAF/ASI

INFŃ

Istituto Nazionale di Fisica Nuclea

Contra la

Astrophysics Center for Multimessenger studies in Europe

Ground-based gravitational-wave detectors

Where we are...

- 01, 02, 03 completed
- O4 ongoing
 - → O4a only LIGO May 2023 January 2024
 - \rightarrow O4b LIGO and Virgo April 2024 June 2025

Low-latency pubblic alerts

O4a 81 + O4b 49 Significant Detection Candidates

(FAR one per 6 months for compact binary merger targets)

dcc.ligo.org/LIGO-G2302098

- the majority high probability to be BBH
- a few candidate consistent with containing a NS
- no candidates expected to have significant remnant mass outside of the final compact object

Low-latency and off-line EM triggered GW search!

FRBs

GW search using time and position of EM transients

Magnetars

SNe

Neutrinos

Multi-messenger astronomy with gravitational-waves

Radioactively powered transients

Another BNS in O3

Masses in the Stellar Graveyard

Some of the interesting results in O3

Masses in the Stellar Graveyard

First result from O4

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

GW230529

- Likely a neutron star merging with a mass-gap compact object
- the primary component of the source has a mass less than 5 $\rm M_{\odot}$ at 99% credibility

Primary mass m_1/M_{\odot}	$3.6\substack{+0.8 \\ -1.2}$
Secondary mass m_2/M_{\odot}	$1.4\substack{+0.6\\-0.2}$
Mass ratio $q = m_2/m_1$	$0.39\substack{+0.41 \\ -0.12}$
Total mass M/M_{\odot}	$5.1\substack{+0.6 \\ -0.6}$
Chirp mass \mathcal{M}/M_{\odot}	$1.94\substack{+0.04 \\ -0.04}$
Detector-frame chirp mass $(1+z)\mathcal{M}/M_{\odot}$	$2.026\substack{+0.002\\-0.002}$
Primary spin magnitude χ_1	$0.44\substack{+0.40\\-0.37}$
Effective inspiral-spin parameter $\chi_{\rm eff}$	$-0.10\substack{+0.12\\-0.17}$
Effective precessing-spin parameter $\chi_{\rm p}$	$0.40\substack{+0.39 \\ -0.30}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	201^{+102}_{-96}
Source redshift z	$0.04\substack{+0.02\\-0.02}$

- updated local NSBH merger rate: 30-200 Gpc⁻³yr⁻¹
- most probable detected NSBH to have undergone tidal disruption (increased symmetry in its component masses)
- no EM couterpart: poor sky-localization

NO multi-messenger GW event after GW17017

BNS mergers are there!

Expected a few hundred of BNS detections per year with the current GW detectors (at design sensitivity) up to z = 0.2

current GW detectors (at design sensitivity) up to z = 0.2

Two long GRBs with kilonova emission, GRB 211211A and GRB 230307A within the current GW detector reach!

Rastinejad et al. 2022 Nature, Mei et al. 2022 Nature, Troja et al. 2022 Nature, Levan et al.2023 Nature

GRB 211211A: GeV counterpart by Fermi-LAT

Mei et al. 2022, Nature

in EXCESS with respect to standard afterglow

Seeds photons emitted from the kilonova ejecta scattered via inverse Compton by electrons in a low-power jet launched at late times NO FIRM EM COUNTERPARTS: detection rate, type of systems, large skylocalization and fainter counterparts to be searched...

Einstein Probe

- Wide-FoV sensitive instrument in X-ray
- New window in X-ray transients
- Large observational resources to the follow-up of the EP (e.g. ESO facilities by STARGATE)

Increased chance to detect off-axis systems

Triggered GW search on XRT

Ierardi, Chopra, Oganesyan, Ascenzi, Banerjee, Patricelli, Branchesi, Jonker, Levan et al.

Early-warning in O5

GW instruments:

- O5 LIGO-Virgo-Kagra

EM instruments, large field of view - ASTRI, CTA, LHAASO, ULTRASAT, X-ray satellites (EP, SVOM)

Ongoing efforts:

- Modification of BAYESTAR to provide the viewing angle in low-latency (Jacopo Tissino, Leo Singer)
- Designing observational strategy of Cherenkov telescopes with MAGIC. Scanning GBM localizations to trace VHE transient in the localization area (PI: Banerjee). To serve as a template for scanning the LVK localization area.

CHALLENGES and OPPORTUNITIES

CURRENT GW DETECTORS

- A number of MM/GW are potentially detectable with current observatories
- Innovative EM observatories are starting observations
- Early warning
- VirgoNext and A# around 2030

CHALLENGES

• Smaller BNS rate, fainter sources to be detected, relatively poor sky-localization

ACME

- Help to enlarge the MM users, training young reserachers
- Help the MM communities to optimize observational strategies, instrument operations, data analysis, modelling
- Coordinate observations
- Being a FORUM for the MM European Community

Next generation GW astronomy and multi-wavelenght follow-up

See GWIC roadmap; Bailes et al. 2021, Nature Reviews Physics; Maggiore et al 2020, JCAP; Evans et al. 2021 arXiv:2109.09882; Branchesi et al. 2023, JCAP

ET: the European 3G GW observatory concept

Triangular shape Arms: 10 km Underground Cryogenic Increase laser power Xylophone

INCLUDED IN ESFRI ROADMAP in 2021 ET collaboration more than 1600 scientists!

EXPECTED SENSITIVITY

ET Science in a nutshell

Combination of:

- Larger distances and broader masses explored
- Increased number of detections
- Detections with very high SNR

Next generation GW effort worldwide

Cosmic Explorer: L shaped detectors, two sites (40km, 20 km [option])

Multi-messenger in the ET era: a few numbers

COMPACT OBJECT BINARY POPULATIONS

BINARY NEUTRON-STAR MERGERS

Sampling **astrophysical populations** of binary system of compact objects along the cosmic history of the Universe

BINARY BLACK-HOLE MERGERS

 10^5 BNS detections per year 10^5 BBH detections per year

ET sky-localization capabilities

ET low frequency sensitivity make it possibile To localize BNS!

- O(100) detections per year with sky-localization (90% c.r.) < 100 sq. deg
- Early warning alerts!

Network sky-localization capabilities

 \bullet

O(1000) detections per year with sky-localization (90% c.r.) < 10 sq. deg

Dupletsa et al. 2023, Ronchini et al. 2022

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

Credit: Ronchini

KILONOVA PHYSICS, NUCLEOSYNTHESIS, NUCLEAR PHYISCS and H0 ESTIMATE

IT IS

Image credit: NASA Goddard Space Flight Center

HIGH-ENERGY

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

COSMOLOGY and MODIFIED GRAVITY

$\frac{\text{GW} + \gamma \text{-ray joint detections per year}}{\text{SURVEY MODE}}$

Fermi-GBM+ET

Fermi-GBM+(ET+CE)

Almost all detected short GRB will have a GW counterpart

Depending on the satellites, we will have tens (e.g. THESEUS) to hunreds (e.g HERMES) of detections per year

Crucial instruments able to localize at arcmin-arcsec level to drive the ground-based follow-up!

Ronchini, MB, Oganesyan, et al. 2022

Prioritization of triggers required

Viewing angle

Sky-localization Start to think to GN observator N triver of the start to think to GN observator N triver of the start to think to GN observator N triver of the start to think to GN observator N triver of the start to think to GN observator N triver of the start to think to GN observator N triver of the start to think to GN observator N triver of the start to the start t ET+CE ET+2CE ET 10¹ $N_{\rm det}$ Parameter estimation on EN triggers • ds $N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$ $N_{\rm det}(\Delta\Omega < 10~{\rm deg}^2)$ $N_{\rm det}(\Delta\Omega < 100~{\rm deg}^2)$ 0.2 $N_{\rm det}(\Delta\Omega < 1000 \ {\rm deg}^2)$ 90 Too lar tric $\Delta D_L/D_L$ 50 (ged) 40 2 30 0.01 an low-latency source 20 parameters and continuous updates 10 0.5 1.0 1.5 2.0 2.5 3.0 0.0 redshift

Pre-merger detections

	`	~ /	~				
Configuration	$\Delta\Omega_{90\%}$	All orientation BNSs			BNSs with $\Theta_v < 15^\circ$		
	$[deg^2]$	$30 \min$	$10 \min$	1 min	$30 \min$	$10 \min$	$1 \min$
$\Delta 10 { m km}$	10	0	1	5	0	0	0
	100	10	39	113	2	8	20
	1000	85	293	819	10	34	132
	All detected	905	4343	23597	81	393	2312
2L 15 km misaligned	10	0	1	8	0	0	0
	100	20	54	169	2	7	26
	1000	194	565	1399	23	73	199
	All detected	2172	9598	39499	198	863	3432

ET alone Branchesi, Maggiore et al. 2023, JCAP

Five minutes before the merger, a **factor 10 higher number of well-localizaed events** when ET operates in a network of next generation GW detectors See Banerjee et al. 2023, A&A

CTA and GW DETECTOR synergies

Analyzing different observational strategies: ET+CE: ten VHE early counterparts can potentially be detected using 10% of the CTA time

Banerjee, Oganesyan, Branchesi et al 2023, A&A

THERMAL EMISSION - KILONOVAE

KILONOVA PHYSICS, NUCLEOSYNTHESIS, NUCLEAR PHYISCS and COSMOLOGY

PHYISCS and COSMOLOGY

GW/KILONOVAE

BNSs detected with a sky-localization $< 40 \text{ deg}^2$

Two filter (g and i) observations repeated the first and second night after the merger and an exposure time for each pointing of 600 s

Branchesi, Maggiore et al. 2023, JCAP

- Sevaral tens per year of joint detections of VRO and ET
- Several hundreds when ET operates in network of detectors (also current generation ones -limited by Rubin efficiency)

Loffredo, Hazra, Dupletsa et al. in prep Bisero et al in prep Colombo et al. In prep

SUMMARY

CURRENT GW DETECTORS

- A number of MM/GW are potentially detectable with current observatories
- ACME a large opportunity to maximize the science results fromMM observations for the European community

Large investments of Europe on innovative next generation facilities:

- Einstein Telescope together with CTA, SKA, ELT, KM3NET
- ACME can help to evaluate prospects and optimize their design and operation

