MM & Radio: challenges & significant results

Zsolt Paragi JIVE

The ACME initiative

- > ACME aims to bring together astronomical and astroparticle observatories and their communities, to address the most powerful phenomena in the Universe
- This will open new horizons in High-energy Astrophysics research

ACME science themes

- High-energy astrophysics addresses phenomena related to powerful cosmic explosions or/and involve objects with relativistic equation of state [these latter are often the consequence of the former]
- > The ACME science themes are the following:
 - Stellar explosions
 - Relativistic stars & Magnetic Powerhouses
 - Stellar or/and Compact Object mergers
 - ❖ Active Galactic Nuclei
- > The above themes include a wide range of objects and phenomena (see next slide) that can be studied with a range of multi-messenger instruments:
 - * Radio arrays, single dish telescopes and interferometer networks
 - IR/Optical/UV telescopes and satellites
 - \star X-ray and γ -ray satellites
 - Cherenkov detectors
 - Low- and high-energy neutrino detectors
 - Gravitational wave interferometer detectors and networks
- Access to these instruments, and to the <u>know-how</u> by the broad astronomy community is in the prime focus of ACME.

ACME science targets & phenomena

Single

Binary

Merger

 $M/R \ll 1$

Relativistic Stellar

 $M/R \sim 1-10^3$

Massive BH

 $M/R \sim 10^4 - 10^{10}$

The radio part of the EM spectrum

Type	Frequency	Wavelength
AM Radio	1 MHz	300 m
FM Radio	100 MHz	3 m
Wifi	2–6 GHz	15–5 cm
Microwave	300 MHz - 300 GHz	1 m - 1 mm
Green Light	5.54 x 10 ¹⁴	0.55 μm

Radio domain

12 orders of mg. in photon energy!

→ Range of physical processes

Instruments & science

~1-6m

~1m - 1cm

~1mm

LOFAR

Eflsberg, e-MERLIN, EVN

(EHT)

Megaparsecs

Kiloparsecs

Parsecs

R Sch

LOFAR

- Currently in transition between LOFAR → LOFAR 2.0
- Has had rapid response (4-5m) short GRB and GW program, a.w.a late-time for GWs (and various other, like XRBs, RS Oph recurrent nova)
- In ACME, main focus is on supporting MM astronomers using the instrument, and accessing archival data

Rowlinson & Anderson (2019); see also Gourdji et al. (2020)

Rowlinson et al. (2023)

Effelsberg

- Largest fully stearable dish in Europe (100m); repainting of the dish is finishing Available as single dish or as part of VLBI networks; pulsar backend; FRB detection
- ➤ Great sensitivity, broad frequency coverage, frequency agility
 In secondary focus nearly continuous 2.5-50 GHz, switching time ~30s
- Various transient programs, but not flexible re fast reaction time/scheduling

TELAMON project: multi-band monotoring of ν -associated/TeV blazars

ACME kick-off

Eppel et al. (2020) - project

Eppel et al. (2023), Atel#16399 (Radio flare in PKS0446+11, coincident w. IceCube-240105A)

e-MERLIN

- Flexible imaging interferometer array 10s of pc to kpc; ~10¹⁵⁻¹⁷ cm in MW; 18-21cm, 5-6cm, 1cm
- Open instrument, ideal for multi-band monitoring campaings Centrally scheduled; pipeline provides (near-)science ready data
- > Various transient programs, e.g. Einstein Probe & Swift follow-up

Constraints on sGRB physics and their host GX (MeerKAT, ATCA, e-MERLIN)

European VLBI Network (EVN)

- Extending over Europe-Asia-South Africa; global-VLBI/GVA initiative (sub-)pc to 100s of pc; ~10¹⁴⁻¹⁶ cm in MW; Main bands: 18-21cm, 5-6cm, 1cm
- > Open instrument; somewhat flexible for transients (ToO,e-EVN, EVN-lite)
 Supporting non-expert PIs/teams; (near-)science ready products is the ultimate goal
- > The most powerful probe of synchrotron and coherent transients (FRB)

 (especially when part of MM campaigns, as combined e-MERLIN+EVN and/or in a global array)

RS Oph in 2021: first nova eruption detected in the VHE (>100 GeV) regime

"We conclude that most of the mass lost by the red giant companion goes in the DEOP [orbital plane...], and in the circumstellar region, while only a small fraction (about one-tenth) is accreted by the white dwarf."

Lico et al. (2024)

Challenges – for the field (radio)

> Lack of dedicated radio transient search/follow-up instruments

Swift [X-rays]

swift.gsfc.nasa.com

Vera Rubin [optical]

Radio – no trigger instruments! For other triggers:

- Fast response projects difficult to arrange
- No central scheduling for distributed networks (observing schedule!)
- Manpower running the observations

Challenges – for the radio community

Future funding of radio facilities and support in general

The SKA (&SKA-VLBI) is an opportunity — and a challenge

Courtesy of Garcia-Miro

European initiatives:

- ARGOS
- LEVERAGE
- EVNCam
- EVN-lite, e-MERLIN upgrade...

ARGOS

From John Antoniadis

Challenges – for the observations

> Sensitivity of follow-up instruments (especially Radio!)

GW1708178 counterpart: Global VLBI vs. simulated maps

Ghirlanda et al. (2019) Science, 363, 968

Wide range of phenomena within easy reach, but:

- GW events barely or non-detectable on cosmological scales
- How to support next-generation GW instruments with EM facilities, especially radio!???
- ACME to keep this on the agenda?

Challenges – for the astronomers

"Radio astronomy is hard"

Visitors at JIVE

Photo: ZP

ERIS 2022

How to support astronomers [TA/VA]?

- Radio/VLBI data analysis reportedly most difficult for students (compared to other bands)
- Non-expert PI support, training, documentation, data reduction tools/recipes – very important
- Providing science-ready data is not trivial
- We must engage the broader astronomical community

Challenges – for the project

> ACME to find solutions, lower barriers, form community!

Beabudai Design

In our focus

- Find the best ways to meet all challenges!
- How to coordinate efforts between different facilities/fields?
- How to create long-term solutions?
- How to lower cross-field barriers, and nurture a community with MM in mind?