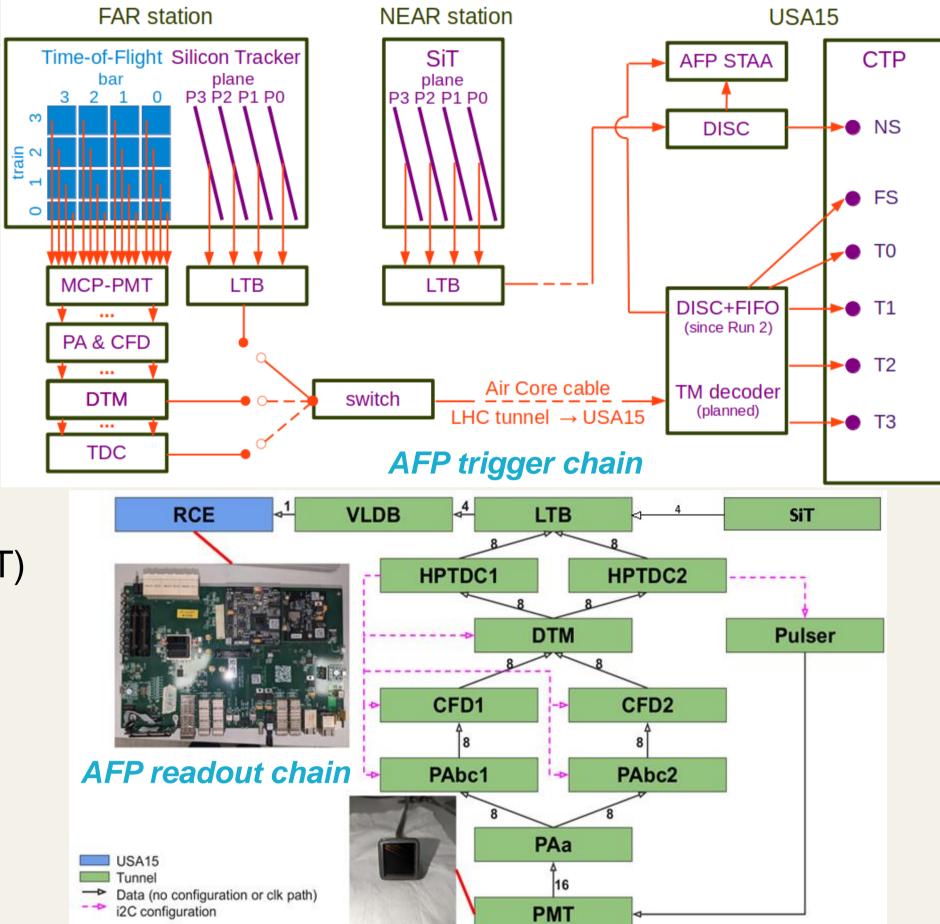

Overview of ATLAS forward proton detectors: status, performance and new physics results

Viktoriia Lysenko on behalf of ATLAS Forward Detectors

Czech Technical University in Prague

The AFP detector is a Roman Pot system - located in the LHC tunnel outside of the ATLAS cavern. Pots are moving close to the beam (1-3 mm) once Stable Beams are declared. AFP consists of four stations, which are located at approximately 205 m (NEAR) and 217 m (FAR) on both sides of the ATLAS interaction region (side A and C). For tracking the Silicon Tracker (SiT) is used, which consists of four layers of silicon pixel detectors. The FAR stations are, in addition, equipped with the Time-of-Flight (ToF) detectors. They collect Cherenkov photons created in L-shaped fused silica bars, which are placed behind the tracker plates.

SiT and ToF: Readout and Trigger chains

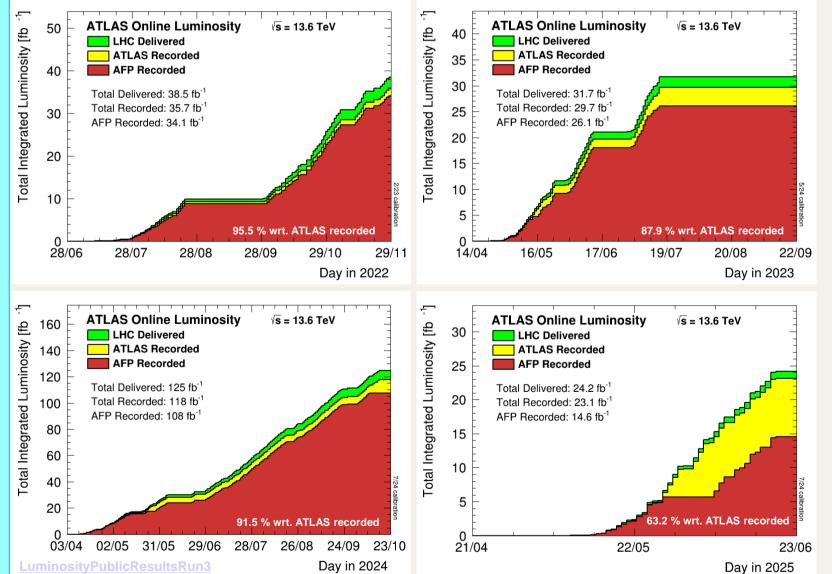

Silicon Tracker (SiT)

Position measurement of scattered protons

- □ Reconstruction of its kinematics
- □ 4 silicon pixel sensors, spaced 9 mm apart
- \Box Sensor size: 16.8x20 mm² (336x80 pixels, 50x250 μ m² each) □ Read out by FE-I4B chips (same as ATLAS Pixel IBL)
- □ 14° angle wrt. beam axis
- □ To improve reconstruction resolution

Time-of-Flight (ToF)

- Suppression of combinatorial background
- □ 16 quartz bars grouped in 4 trains
- Train/bar widths: 3 mm, 3 mm, 5 mm, 5.5 mm
- Directing light to Micro-Channel Plate Photo-Multiplier Tube (MCP-PMT)
- □ Amplified by 3-stages of Pulse Amplifiers (PAa and PAbc)
- Processed by Constant Fraction Discriminator (CFD)
- Passed through Digital Trigger Module (DTM)
- Processed by High-Performance Time-to-Digital Converter (HPTDC)*
- Double PAbc, CFD, and HPTDC; each for 2 trains
- **Common DAQ chain:** Local Trigger Board (LTB), Versatile Link Board (VLDB) and Reconfigurable Control Element (RCE)



Trigger

- □ SiT trigger signal sent by Local Trigger Board (LTB)
 - □ Standardly, requires signal from at least 3 planes
 - Can be reprogrammed to different logic
 - □ 400 ns deadtime
- □ ToF trigger signal sent by Digital Trigger Module (DTM)
 - Requires signal from at least N bars in a train
- □ Far stations can trigger either on SiT or ToF
- Passed to ATLAS cavern (USA15) by ultra-fast Air Core cables
 - □ To arrive in time to trigger the "central" detector
- □ Far station signal connected to 5 Central Trigger Processor (CTP) inputs
 - □ 1 SiT and 1 for each ToF train
- Different latency for SiT and ToF triggers

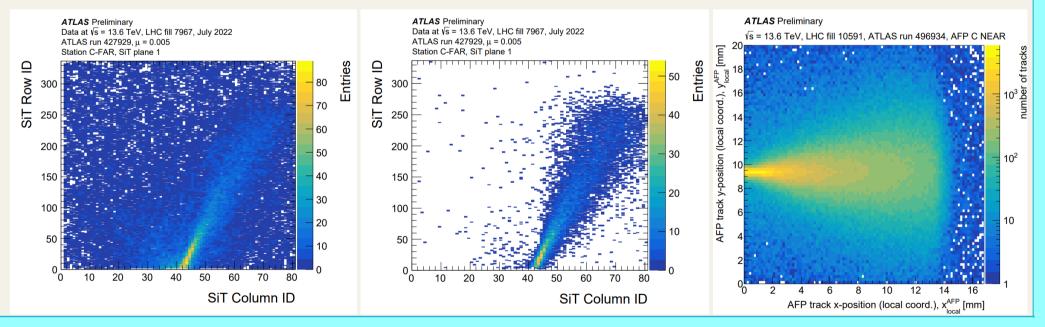
Run-3 data-taking and Data Quality

- □ AFP recorded luminosity, calculated for both sides
- of AFP taking data simultaneously
- □ Total in LHC Run-3 so far:
 - □ Total AFP recorded: 182.8 fb⁻¹
 - □ 88.5 % wrt. ATLAS

Types of AFP GRLs

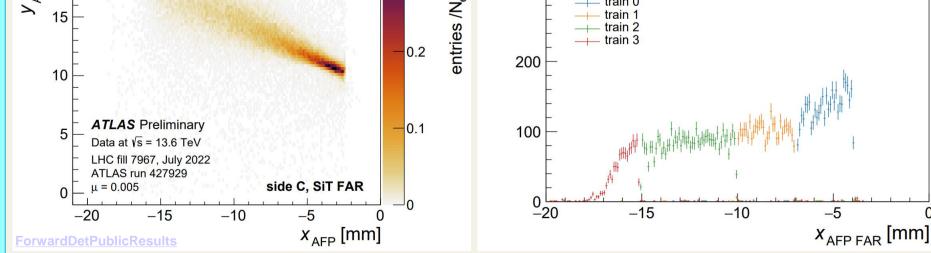
- □ Based on subdetectors: SiT per side and combined, ToF
- □ Based on strictness level: each SiT detector has at least 3/4 (or 2/4) planes operational
- Fraction of good luminosity after AFP loose Data Quality wrt. ATLAS:

Туре	2022	2023	2024			
SiT A-side only	96%	82%	83%			
SiT C-side only	93%	79%	82%			
SiT A and C sides	92%	78%	70%			
ToF only *All fractions are prelimin	-	36%	5%**			


ToF electronics was taken out from the tunnel after ramp-up

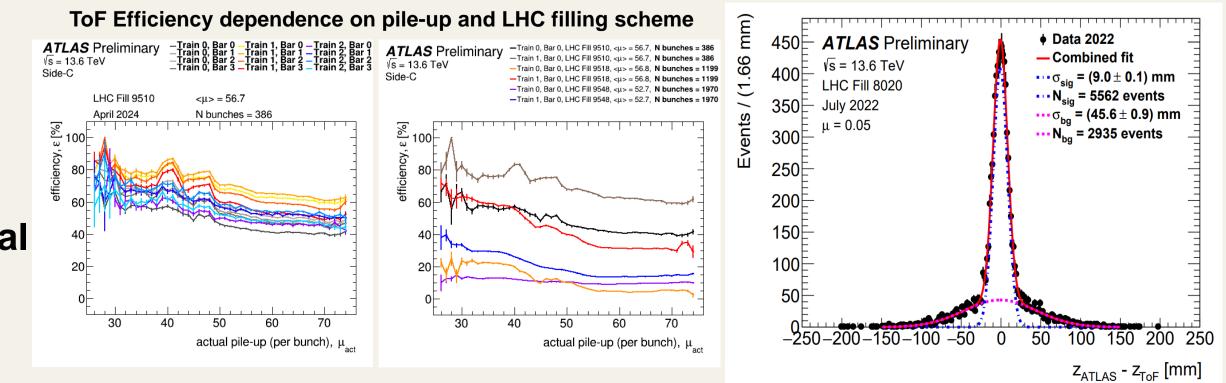
New AFP control systems in LHC Run-3

Automatized system of defects covers hardware and TDAQ malfunctions of each module for both sub-detectors (SiT and ToF) □ Automatic recovery: reconfiguration of individual modules on a fly □ Mattermost bot: sending warnings and AFP state and issues


SiT Hit Map

- □ Effect of signal cleaning on hit distribution in a single SiT plane
 - □ Single track reconstructed per station
 - □ Single cluster reconstructed per plane
 - Only 1 or 2 hits recorded per plane
- □ "Diffractive pattern"
 - Caused by settings of LHC magnet between ATLAS interaction point and AFP detectors
 - □ In 2025 horizontal crossing angle was changed from vertical to horizontal

ToF efficiency and vertex matching


- **ToF–SiT** alignment /s = 13.6 TeV, Run 428770, 07/ Far A - Fill 8019 - μ = 0.05 Side-A [Ш 20 single track in SiT FSC ATLAS Preliminary && single train in ToF ATLAS run 429142 side C $\langle \mu \rangle = 36.8$
- **Efficiency**: Probability of getting hit in the ToF detector during the low-µ run in July 2022

Distribution of reconstructed tracks (center of beam pipe at [0, 10 mm]) Selection:

- Events triggered by Minimum-Bias Trigger Scintillators (MBTS)
- Exactly one reconstructed vertex
- □ Single track in each station on a given side Correlation of SiT track x-position to ToF train signal Selection:
- Single SiT track in the station
- Single ToF train signal in the station

	187		16.0	19.0	20.0	- 60	el effic	۶,	L00.0	100.0	100.0	100.0	el effic	TR 1		12.0	12.0	13.0		IR T		7.0	8.0	8.0	- 60
	18 ²	Single 7.0	track 8.0	8.0	8.0	- 40	Channel	2	Single 14.0	track 28.0	32.0	21.0	Channel	182	Single 95.0	98.0	98.0	98.0	Channel	1822	Single	track 13.0	18.0	17.0	- 40
	1 ⁴³	6.0 AŢLAS	7.0 S Prelin	7.0 ninạry	6.0	- 20	*	3 ³	8.0 ATLAS	10.0 S Prelir	10.0 minary	9.0	- 20	183		16.0 S Preli	19.0 minary	15.0	- 20	18 ³	95.0 ATLA	99.0 S Prelii	99.0 minary	85.0	- 20
		Baro	Barl	Barl	Bar3			\$	aro	Bath	Bail	Bat 3			Baro	Barl	Barl	Bat			Bato	Barl	Batl	Bar3	
Side-C		√s = 13.6 Far	i TeV, Run C - Fill 80:	428770, 19 - μ = 0.	07/2022 .05	100	5	Ň	/s = 13.6 Far	6 TeV, Run C - Fill 80	1 428770, 19 - μ = 0	07/2022 .05				.6 TeV, Ru r C - Fill 80			1 ¹⁰⁰ 5			6 TeV, Rur r C - Fill 80			100
	140	90.0	90.0	91.0	91.0	- 80	efficiency [%]	+0 ⁻	10.0	22.0	28.0	19.0	efficiency [%]	TRO	7.0	9.0	9.0	8.0	efficiency [%]	1R0	7.0	8.0	8.0	7.0	- 80
	18 ¹⁷		22.0	38.0	25.0		ニーベ	۶,	91.0	91.0	91.0	91.0	-	TRT		23.0	32.0	16.0		18.7		10.0	11.0	9.0	- 60
	18 ²	Single 7.0	track 9.0	8.0	8.0	- 40	Channe		Single 15.0	track 44.0	34.0	29.0	- 40 Channel	1R2	Single 87.0	e track 90.0	90.0	90.0	Channel of the second s	18 ²	Single 11.0	track 23.0	18.0	20.0	- 40
	1 ⁴³	6.0 ATLAS	8.0 S Prelin	8.0 ninạry	7.0	- 20	Å	3	8.0 ATLAS	11.0 S Prelir	12.0 minary	8.0	- 20	183	12.0 ATLA	31.0 S Preli	33.0 minạry	19.0	- 20 0	18 ³	88.0 ATLA	90.0 S Prelii	90.0 minary	90.0	- 20
		Baro	Bath	Barl	Bat 3			\$	aro	Bath	Barz	Bar 3			Baro	Barl	Barl	Bar3			Baro	Barl	Barz	Bat 3	

□ Tag and Probe method, tagged by SiT Selection: Single SiT track in the Far station \Box Dependence on μ and bunch structure **Vertex matching**: Difference between longitudinal vertex position measured with AFP ToF and ATLAS Inner Detector

□ Small initial background contribution wrt. expected signal: low pile-up data-taking conditions Evident possibility of background rejection □ Selection: Primary vertex in ATLAS Inner Detector □ Single track in AFP SiT in each Far station

□ Single AFP ToF train signal in each Far station □ SiT track position matching the ToF train position □ Maximum of one hit in each ToF channel

□ Resolution: $9.0 \pm 0.1 \text{ mm} \approx 40 \text{ ps}$

EPS-HEP July 2025, Marseille, France