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FIGURE 1

Big data sizes. Orders of magnitude involved in di!erent data sources for several big data players. The area of each bubble represents the amount of

data streamed, hosted or generated. The accompanying text annotations emphasize the crucial factors considered in the estimation process.

Average per-unit sizes are indicated in parentheses, where italic denotes measures derived from reasonable assumptions due to the absence of

available references.

actual acquisition rate stands at nearly 1 PetaByte (PB) per day
(CERN, 2017), equivalent to roughly 160 PB1 a year in 2018. In
addition to the actual data collected by LHC, physics analyses
necessitate the comparison of experimental results with Monte
Carlo data, simulated based on current theories, resulting in ∼1–
2 times2 additional data (Grandi, 2017). Furthermore, the CERN
community is actively working on enhancing the capabilities of
the Large Hadron Collider for the High Luminosity (HL-LHC)
upgrade (Aberle et al., 2020). As a consequence, the generated
data are expected to increase of a factor ≥5 (Aberle et al., 2020),
resulting in an estimated 800 PB of new data each year by 2026. In
terms of other renowned big data stakeholders such as Google and
Meta, the services they provide generate a yearly data production
comparable to the effective figures of LHC, amounting to a few
hundreds petabytes.

For instance, the Google search index tracked at least 30
billion webpages in 2021 (Van den Bosch et al., 2016; Indig, 2020;
De Kunder, 2021; Djuraskovic, 2021), which gives a total of 62 PB
when considering an average page size of 2.15 MB (Teague et al.,
2021). Regarding YouTube video uploads, instead, 720 thousands
hours of footage were uploaded daily (Dean, 2021b), resulting in
roughly 263 PB when assuming an average size of 1 GB (Vera et al.,
2019). Similarly, the photos shared on Instagram and Facebook
amount to an estimated 68 PB and 252 PB, respectively, given
that 65,000 and 24,0000 pictures where shared every minute on
these social media (Domo, 2021) and assuming 2 MB as the
average picture size (Adobe, 2021). The yearly data production even

1 LHC registered 161 days of physics data taking in 2018 (Todd et al., 2018).

2 A factor of 1.5 was adopted here for the bubble plot.

increases when considering storage services like Dropbox. In 2020,
the company reported 100million new users, 1.17millions of which
were paid subscriptions (Dean, 2021a). Assuming that free accounts
utilized 75% of the 2 GB storage available, and that paid accounts
occupied 25% of the total 2 TB, the amount of new storage required
by Dropbox users in 2020 is∼768 PB.

Apart from the nominal values of generated information, data
streaming constitutes a significant slice of the big data market. The
continuous flow of small- to medium-sized files results in massive
traffic when scaled up to millions of users. For instance, Statista

reports that nearly 131 trillion electronic communications were
exchanged from October 2020 to September 2021, comprising 71
trillion emails and 60 trillion spam messages (Statista, Research
Department, 2021). Assuming average sizes of 75 and 5 KB for
standard (Tschabitscher, 2021) and junk (Baker, 2014) emails,
respectively, this leads to an estimated 5.7 EB traffic during the
analyzed period, surpassing the amounts discussed so far. Another
example of substantial data streaming is represented by Netflix,
which operates on an even larger scale. The company’s user base
has experienced significant growth in recent years, particularly due
to changes in daily routines imposed by the pandemic. According
to the 9-th edition of the Data Never Sleeps report by Domo,
Netflix users consumed 140 million hours of streaming per day in
2021 (Domo, 2021). This translates to a total of roughly 51.1 EB
assuming 1 GB of data for standard definition videos (Perry, 2021).
Surprisingly, the scientific community also plays an important
role in the data streaming context. Indeed, large collaborations
comprising thousands of researchers worldwide orchestrate the
LHC experiments at CERN. Consequently, the data collected
at CERN are continuously transferred via the Worldwide LHC
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40,000 Exabytes/year 
produced!

What we can  
afford to keep

https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2023.1271639/full
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What we’re looking for is way down here somewhere!
New Physics?



5

Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

On-detec tor  ML

1 PB of data / second 
Collisions every 25 ns
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Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

2) Send reduced event info to L1 
(5% of internet)

2) Discard > 99% of collisions 
within ~few μs

1) Buffer data inside detector



High Luminosity  LHCLHC (current ly )

Challenges
• Price to pay for high luminosity  

— extreme pileup  
‣ At HL-LHC, expect on average  
200 overlapping pp collisions 

• Particularly challenging for  
trigger system 
‣ Inclusion of tracking central to 

mitigating effects of pileup

!4

ATLAS & CMS:  Trigger System
• Current trigger systems

• L1 trigger
• Hardware-based, implemented in custom-built electronics
• Muon & calorimeter information with reduced granularity, no tracking information

• High-Level Trigger (HLT)
• Software-based, executed on large computing farms
• Tracking information & full detector granularity
• ATLAS use level-2 & event filter, CMS single-step HLT
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ATLAS:  3 physical levels CMS:  2 physical levels

Wesley Smith, U. Wisconsin, October 3, 2013 ECFA – HL-LHC: – Trigger & DAQ -  3 

Journey to HL-LHC 
2012-2013 run: 

•  Lumi = 7 x 1033, PU = 30, E = 7 TeV, 50 nsec bunch spacing 
•  2012 ATLAS, CMS operating: 

•  L1 Accept ≤ 100 kHz,  
•  Latency ≤ 2.5 (AT), 4 µsec (CM) 
•  HLT Accept ≤ 1 kHz 

Where ATLAS & CMS will be: 
•  Lumi = 5 x 1034 

•  <PU> = 140, Peak PU = 192 (increase × 6)  
•  E = 14 TeV (increase × 2)  
•  25 nsec bunch spacing (reduce × 2) 
•  Integrated Luminosity > 250 fb-1 per year  

Need to establish scenario for L1 Accept, Latency, HLT 
Accept & new trigger “features” (e.g. tracking trigger) 
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L1 output:  75 kHz

~3 kHz

200 Hz

40 MHz

100 Hz

L1 trigger decision 
in ~2.5 (4) µs for 

ATLAS (CMS)

L1 output:  100 kHz
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100 kHz

~1 kHz

750 kHz

7.5 kHz

LHC HL-LHC
40 MHz

L1 output:

HLT output:

Simulated event display with average pileup of 140
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• Trigger system reduces 40 MHz 
collision rate to data rate that can be 
read out & written to disk 

• w/o tracking, L1 output for PU=200 
is ~4000 kHz

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

6 cm

How to maintain physics acceptance in increasingly  complex 
environments?



Level-1 trigger:  
Latency O(10) ns 

Detector: 
Latency O(1) ns

Fast ML inference on specialised hardware

FPGA inferenceASIC inference



Quantization-aware 
training

Co-processing kernel  
(Accelerators/SoCs) 

ASICs 

FPGA custom designs

Nature Machine Intelligence 3 (2021) Mach. Learn.: Sci. Technol. 2 045015 (2021)
JINST 13 P07027 (2018)

https://www.nature.com/articles/s42256-021-00356-5
https://doi.org/10.1088/2632-2153/ac0ea1
https://doi.org/10.1088/1748-0221/13/07/P07027
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Energy (GeV)Trigger threshold

NP?

- - LOST DATA

- - SELECTED DATA

- - POSSIBLE NP SIGNAL

 
Are we keeping “the right” ones?



Anomaly threshold
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Energy (GeV)Trigger threshold

NP?

- - LOST DATA

- - SELECTED DATA

- - POSSIBLE NP SIGNAL

AD score

… in 50 nanoseconds!

CMS-DP-2024-059 Anomaly Detection triggering

https://cds.cern.ch/record/2904695


Outlier detection in analysis
2

Figure 1: Dijet mass distribution of a simulated set of QCD background events injected with
24 fb of the X→YY signal before any cut on the anomaly score (left) and after cutting on the
anomaly score of the TNT algorithm (middle). The distribution after cutting on the TNT
anomaly score in a background only sample is shown on the right. In both cases the back-
ground distribution after the anomaly remains smooth and is well modeled with a parametric
function. Cutting on the TNT score removes a significant amount of background events, result-
ing in a substantially enhanced signal peak in the middle plot.

the background distribution into something non-smooth is also crucial, as the final statistical
analysis involves assuming that the background can be described by a smoothly falling func-
tion. This is shown in the plot on the right. A full explanation of the method used to produce
this signal-sensitive data distribution, as well as four other similar methods, will be described
in the following.

The anomaly detection methods we use are based on three different training paradigms for ML
based anomaly detection: un-supervised, weakly-supervised and semi-supervised learning.

The un-supervised learning attempts to construct a model to identify anomalous jets without
using any labeled examples. The method employed here consists of a Variational Autoencoder
(VAE) trained on a data sample dominated by QCD jets and a quantile regression network
(QR) used to decorrelate the anomaly score with the dijet mass. This method is referred to as
VAE-QR. Autoencoders are a type of neural network which are trained to compress inputs into
a smaller representation and decompress to recover the original inputs. The VAE employed
here takes as input the 100 highest-pT constituents of a jet, with the ordering obtained from
a C/A reclustering of the components. Each particle is represented as a set of three features,
which are the x, y, and z component of its momentum p. The VAE is trained using jets from
the signal-depleted control region. It therefore learns how to perform this compression and
decompression on QCD background jets, but should not be able to perform this task as well
on anomalous jets not present in the training sample. Therefore the difference between the
original and reconstructed data can be used as an effective anomaly score, with higher values
corresponding to more signal-like events. To decorrelate this anomaly score from the variable
of interest (in this case the dijet invariant mass), a quantile regression [13] method is used. The
quantile regression is trained to find the cut on the anomaly score as a function of mjj which
corresponds to a fixed data efficiency in the signal region. A cut on the decorrelated anomaly
score is then applied to both jets in the signal region. A cut corresponding to the 10% most
anomalous data is used.

Three methods based on weak supervision are employed: CWoLa Hunting [14], TNT [15] and
CATHODE [16]. Weakly supervised training [17] is entirely data-driven, and allows one to
train a signal versus background classifier by using labels for groups of data events rather than

Before cut on anomaly score After cut on anomaly score

Friday Track 9: Model-independent searches and anomaly detection at the CMS experiment, L. Moureaux 
The CMS Collaboration 2025 Rep. Prog. Phys. 88 067802 

https://indico.in2p3.fr/event/33627/contributions/154478/
https://iopscience.iop.org/article/10.1088/1361-6633/add762


Rep. Prog. Phys. 88 (2025) 067802 The CMS Collaboration

Figure 5. The discovery sensitivity for the process A→ BC, using the anomaly detection methods and a comparison to sensitivity of the
inclusive search. In all signal processes, the mass of the heavy resonance is set to mA = 3TeV. For the BSM daughter particles, the masses
of the Y and Y ′ are set to 170GeV, while the masses of the B ′, R, and H are set to 400GeV. In the upper panel, for each method, the cross
section, which would have led to an expected 3σ (5σ) excess, is shown as a cross (square) marker. Sensitivities from six anomaly detection
methods (six colors) are compared to an inclusive dijet search in which no substructure selection is made (black) and traditional substructure
selections targeting 2-prong (dark brown) or 3-prong (tan) decays. The expected 95% confidence level upper limits from the inclusive
search are also shown in the upper panel as a dashed line. For all signal models at least one anomaly detection method is able to achieve an
expected 5σ significance at a cross section at or below the upper limit of the inclusive search. Shown in the lower panel is the ratio of the
cross section sensitivity from the inclusive search to the corresponding sensitivity for each method.

some signals. Signals in which only one of the two jets has
a distinctive signature, such as the Q∗ → qW ′ → 3q signal or
the X→ YY ′ → 4q mass points that feature very light daugh-
ter masses, are found to be difficult for the anomaly detec-
tion methods. This is likely because for these signals one of
the two jets originates from a single parton, or lacks suffi-
cient jet substructure to be distinguished from a single parton,
which makes signal discrimination more challenging. For the
X→ YY ′ → 4q signal, this occurs because light daughters are
extremely boosted, making the 2-prong structure look similar
to a single prong. For example, for a 25GeV daughter from a

3TeV resonance, the typical separation ∆R between the two
quarks is only ∼0.03.

It is important to mention that these benchmark signals are
included in the signal prior of the generic QUAK method. In
contrast, they are not used by the other methods, except in the
procedure used to evaluate the signal efficiency. It is found
that when removing a given signal from the prior of the gen-
eric QUAK method, the sensitivity to that signal degraded by
∼30%. The results from the other methods may therefore gen-
eralize better to untested signals than the results of the generic
QUAK search.
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Setting limits on ~50 New Physics hypothesis in one go,  
many which have never been searched for!

Friday Track 9: Model-independent searches and anomaly detection at the CMS experiment, L. Moureaux 
The CMS Collaboration 2025 Rep. Prog. Phys. 88 067802 

https://indico.in2p3.fr/event/33627/contributions/154478/
https://iopscience.iop.org/article/10.1088/1361-6633/add762


Anomaly detection with 
VAEs in 50 ns 

CMS DP2023_079 
E. Govorkova et al (2022)

Quantised Interaction 
Networks and Deep Sets 

in <160 ns 

 
P. Odagiu et al. 2024 

On-detector data 
compression 

  
10k ECONS with ML inside 

in CMS HL-LHC 

 

 
TWEPP, C. Suarez 

https://cds.cern.ch/record/2876546/files/DP2023_079.pdf
https://www.nature.com/articles/s42256-022-00441-3
https://cds.cern.ch/record/2888659/files/Publication.pdf
https://indico.cern.ch/event/1255624/contributions/5443789/
https://indico.cern.ch/event/1255624/contributions/5443789/


Semantic segmentation 
for autonomous vehicles 

 
N. Ghielmetti et al. 2022 

Denoising event cameras 

 

CVPR2023

Earth monitoring in 
satellites 

Edge SpAIce, S. Summers

…and outs ide

• MLPerf tinyML benchmarking  
• For fusion science phase/mode monitoring  
• Crystal structure detection  
• Triggering in DUNE  

• Accelerator control  
• Magnet Quench Detection 
• Food contamination detection  
• Quantum control etc….

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://openaccess.thecvf.com/content/CVPR2023W/EventVision/papers/Rios-Navarro_Within-Camera_Multilayer_Perceptron_DVS_Denoising_CVPRW_2023_paper.pdf
https://arxiv.org/abs/2206.11791
https://indico.cern.ch/event/1156222/contributions/5058420/attachments/2535257/4363120/CJH_FML4Science-10_4_22.pdf
https://docs.google.com/presentation/d/1gnAqn4gpZvx4JVVD8dqbXKMsZ_vpguO9hxC7zH0jv6w/edit#slide=id.g13512715b6e_0_5
https://indico.cern.ch/event/1156222/contributions/5062816/attachments/2522993/4338612/fast_ml_2022_gk.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://ieeexplore.ieee.org/document/9354037
https://ieeexplore.ieee.org/document/9181293


Join us!

https://indico.cern.ch/event/1496673/


Thank you very much!


