Thea Klæboe Årrestad (ETH zürich)

Machine Learning and the needle in the needle stack **EPS 2025 Young Experimental Physicist Prize**

Streaming

Clissa et al. 10.3389/fdata.2023.1271639

Storage

data sources

Production

Time to process

Production frequency

What we're looking for is way down here somewhere!

2) Discard > 99% of collisions within ~few µs

2) Send reduced event info to L1 (5% of internet)

1) Buffer data inside detector

A

LHC (currently)

- Current trigger systems \bullet
 - L1 trigger
 - Hardware-based, implemented in custom-built electronics
 - ala viva atav inita via atiana :16

High Luminosity LHC

real and lerity no tracking information

Geneva Lake

CMS

Fast ML inference on specialised hardware

LHCb

ASIC inference

Detector: Latency O(1) ns

FPGA inference

Level-1 trigger: Latency O(10) ns

nature machine intelligence

Quantized neural networks on the edge

Nature Machine Intelligence 3 (2021)

<u>JINST 13 P07027 (2018)</u> Mach. Learn.: Sci. Technol. 2 045015 (2021)

- - LOST DATA SELECTED DATA - POSSIBLE NP SIGNAL

Trigger threshold

Are we keeping "the right" ones?

Anomaly Detection triggering

Trigger threshold

... in 50 nanoseconds!

Outlier detection in analysis

Before cut on anomaly score After cut on anomaly score

The CMS Collaboration 2025 Rep. Prog. Phys. 88 067802 Friday Track 9: Model-independent searches and anomaly detection at the CMS experiment, L. Moureaux

Setting limits on ~50 New Physics hypothesis in one go, many which have never been searched for!

The CMS Collaboration 2025 Rep. Prog. Phys. 88 067802 Friday Track 9: Model-independent searches and anomaly detection at the CMS experiment, L. Moureaux

E. Govorkova et al (2022)

P. Odagiu et al. 2024

On-detector data compression

10k ECONS with ML inside in CMS HL-LHC

TWEPP, C. Suarez

...and outside

Colliding particles not cars: CERN's machine learning could help selfdriving cars

CERN and software company Zenseact wrap up a joint research project that could allow autonomous-driving cars to make faster decisions, thus helping avoid accidents

25 JANUARY, 2023 | By Priyanka Dasgupta

N. Ghielmetti et al. 2022

- MLPerf tinyML benchmarking
- For fusion science phase/mode monitoring
- <u>Crystal structure detection</u>
- Triggering in DUNE

satellites

- Accelerator control
- Magnet Quench Detection
- Food contamination detection
- <u>Quantum control etc....</u>

1-5 September 2025 fast machine learning for science

Real-time and accelerated ML for fundamental sciences

indi.to/fastml25

Thank you very much!

