

DUNE Astrophysical and Atmospheric Neutrinos

On behalf of the DUNE Collaboration

EPS-HEP conference 09/07/25

Presentation of the DUNE experiment

Goals

- Charge parity violation phase
- Neutrino mixing angles
- Neutrino mass hierarchy
- BSM searches

- Neutrino beam energy: 0.5 to 8 GeV with >2MW intensity
- Moveable Near Detector and separate on-axis detector
 575m from the source
- Far Detector (FD) 1.5 km underground
- 4 modules of 17.5 kt each

→ "DUNE Status and Science" talk given by Laura Pérez Molina yesterday

DUNE FD

- LArTPC **high resolution event imaging** → kinematic reconstruction of nu interactions
- Excellent **event type classification** $(v_{\mu}$ CC, $v_{\rm e}$ CC, NC and potential for v_{τ})
- Excellent particle identification (electron, mu, proton)
- Photon Detection System: timestamp for off beam events, 3D reconstruction
- Low hadronic kinetic thresholds → Proton ~0(25 MeV)
- Detector cavern has been excavated

Atmospheric neutrinos in DUNE

- Relevant → 2 DUNE FD modules will operate for ~2 years without any beam
- Main source of neutrinos in early DUNE will be from atmospherics
- Expect ~2500 atmospheric neutrino
 events per 10kt per year (including ~10
 nutau events)
 - \rightarrow O(10⁵) atmospheric neutrinos expected in 20 years of DUNE operation

Physics with atmospherics : $\delta_{\rm CP}$

Physics with atmospherics : MH and θ_{23}

- Most visible effect ~2-10 GeV → well within the range of DUNE's capabilities
- Enhanced by capability to separate nu/anti-nu events
 → work on-going
- Complementarity to beam for BSM as well
- Ability to see 3 flavor oscillation modes with nutau appearance

Physics with atmospherics: sterile neutrinos

Reconstruction of atmospheric neutrinos

MC simulation of 15M atmospheric events used for studies with full event reconstruction optimized for atmospheric neutrinos:

- Neutrino direction → needed to estimate the baseline. 3 methods for this:
 - Output only the primary lepton output like most detectors
 - Using all reco final state particles \rightarrow need to measure kinematics of each particle
 - Using all reco detector hits for a calorimetric direction reconstruction
- Energy reconstruction of partially contained muons

Paper on atm v reco in DUNE coming soon

Towards atm sensitivity studies

MaCh3 software used as oscillation fitter → relies on the sampling of posterior likelihood using Markov Chains. Already used in T2K Implementation of DUNE atmospherics in MaCh3 ready to go

Next steps:

- First statistics-only fits with the reconstructed atmospheric sample for standard oscillation parameters and multiple BSM scenarios
 - → <u>NuOscillator</u> package provides interface between MaCh3 and multiple oscillation probability computation frameworks
- Implementation of realistic flux (expecting updated Bartol and FLUKA models), cross-section (newly implemented GENIE tune) and detector systematics

Supernovae neutrinos in DUNE

- DUNE expects to see a ~3770 neutrino interactions
 from the next galactic core collapse SN at 10kpc
- Expect DUNE to be **most sensitive to** v_e **flux** produced from neutronization due to large CC cross-section
- DUNE increases expected global v_e rate from a 10kpc SN by a factor 150*
- Charge and light systems of each module will trigger independently on a SN burst to minimize downtime

Expected number of SN neutrino interactions in DUNE with a 40 kt fiducial volume

*data from https://snews2.org/about/

SN physics and pointing

- Most models predict flux described by pinched thermal distribution
- DUNE will measure model parameters to describe conditions within the collapsed star
 - → measurement at 10kpc can distinguish between current models
- Possibility to probe neutronization burst → mass ordering, collapse model, ...
- SN pointing: neutrino experiments need to predict the source location in the sky
- In DUNE → ES interactions carrying directional info are isolated using channel tagging algo
- Pointing resolution is 4.3° (40kt mass, SN at 10kpc)

May 2025 paper: <u>"Supernova pointing capabilities of DUNE"</u>

May 2021 paper:

"Supernova neutrino burst detection with DUNE"

Solar neutrinos in DUNE

- DUNE will record several solar neutrino events/day/kt
- DUNE has no outer veto → need to evaluate and characterize sources of background
- External backgrounds limit DUNE sensitivity
 - → new measurements in first years of operation will improve current models
- Strong sensitivity to ∆m²₂₁ due to day-night asymmetry
 - ightarrow visible at 2σ within few years of operation

Sensitivity analysis maturing and heading towards publication

Reconstructing low energy neutrinos

Reconstruction:

- → Largest labeled primary cluster → e⁻ candidate
- → Adjacent clusters tagged as **de-ex** γ **Compton**
- \rightarrow Calorimetric reco of e^{-} and γ ionization energy

- Sub-dominant channels: NC interactions on Ar and neutrinos scattering off electrons (ES)
 - → can be isolated with DUNE's precision tracking technology
- Sub-cm resolution shows distinctive signal topologies
- Information to discriminate various
 low-energy signals + background
- Work on-going → deep learning for channel selection

Summary and conclusions

- Wide range of physics studies available for DUNE in addition to the beam program
- Atmospheric oscillation analysis program progressing quickly → targeted developments improving energy and direction resolution
- Sensitivity to δ_{CP} , mass hierarchy and BSM searches like sterile neutrinos

- Next steps → first statistics-only bayesian sensitivities using MaCh3 + implementation of various systematics (flux, neutrino interaction, detector modelling, ...)
- When operational, **DUNE will change the global SN neutrino landscape** \rightarrow first v_e -sensitive detector at the multi-kt scale with 4.3° pointing resolution at 10kpc
- Feasibility of solar neutrino measurements in a detector with no veto is a testament to the LArTPC tracking technology → precision measurement of neutrino mixing and fluxes

Publications coming soon on these different topics

Thanks a lot for your attention!

Energy reconstruction of atm neutrinos

$$\theta_0 = \frac{\kappa(\mathbf{p})}{\beta c \mathbf{p}} \mathbf{z} \sqrt{\frac{\mathbf{x}}{\mathbf{X}_0}} \left[1 + 0.038 \ln \frac{\mathbf{x} \mathbf{z}^2}{\mathbf{X}_0 \beta} \right]$$

Reconstruction of low-energy neutrinos

Machine learning to tag channels

Solar neutrino backgrounds in DUNE

- Internal argon: from measurements of atmospheric argon activity by dark matter experiments
- Components: assay data of construction materials
- Externals: assays of rock and shotcrete with simulation of neutron and gamma backgrounds

