

Neutrino Physics

PMNS Parameterisation: 3 mixing angles (θ_{12} , θ_{13} , θ_{23}) and 1 CP-violating phase (δ_{CP})

Neutrino Physics

 \rightarrow

 \rightarrow

PMNS Parameterisation: 3 mixing angles (θ_{12} , θ_{13} , θ_{23}) and 1 CP-violating phase (δ_{CP})

Neutrino Physics

 \rightarrow

 \rightarrow

PMNS Parameterisation: 3 mixing angles (θ_{12} , θ_{13} , θ_{23}) and 1 CP-violating phase (δ_{CP})

DUNE Science Program

Taking advantage of the **long-baseline**, DUNE will perform **precision** measurements on:

- Leptonic **CP violation**
- Three neutrino mixing parameters
- Neutrino mass ordering (5*o*)

- Searches for physics beyond the Standard Model (BSM)
 - Proton Decay search ($p \rightarrow K^+ \overline{\nu}$)
- Atmospherics neutrinos

see C. Sironneau's talk

- Low energy neutrino astrophysics:
 - Solar neutrinos
 - Core-collapse supernovae

Deep Underground Neutrino Experiment

Next-generation long-baseline (**1300 km**) oscillation experiment **between Fermilab** (Illinois) and the **Sanford** Underground Research Facility (South Dakota, **1.5 km to surface**) consisting of:

- 1. Muon neutrino beam: 1.2 MW neutrino beamline (LBNF)
- 2. Near Detector (ND): 574 m from the beam for monitoring the unoscillated flux
- 3. Far Detector (FD): measurement of oscillated neutrinos with four 17-kT LArTPC modules

Phase Approach

PHASE-I

- Full Near and Far site facilities
- 1.2 MW upgradable neutrino beamline
- Far Detector (FD): **two** LArTPCs modules (17 kt each)
- Near Detector (ND): three detectors including a LArTPC and a temporary muon spectrometer

Phase Approach

PHASE-II

- Beamline upgrade to > 2MW
- **Two additional** FD modules (four in total for 40 kt of active volume)
- A more capable ND

DUNE beam and oscillation probability

Precision measurements of the oscillation parameters from P($v_u \rightarrow v_e$) and P($\overline{v}_u \rightarrow \overline{v}_e$)

- Neutrino and Anti-neutrino mode
- World-leading intensity: $1.2 \text{ MW} \rightarrow 2.4 \text{ MW}$
- Very high flux peaked at **2.5 GeV** neutrino energy
- The oscillation probability has a strong dependence on both $\delta_{\rm CP}$ and mass ordering for L=1300 km
- Wide band beam: coverage of first and second oscillation maximum will be crucial to resolve the degeneracy

DUNE beam and oscillation probability

Precision measurements of the oscillation parameters from P($v_u \rightarrow v_e$) and P($\overline{v}_u \rightarrow \overline{v}_e$)

- Neutrino and Anti-neutrino mode
- World-leading intensity: $1.2 \text{ MW} \rightarrow 2.4 \text{ MW}$
- Very high flux peaked at 2.5 GeV neutrino energy
- The oscillation probability has a strong dependence on both $\delta_{\rm CP}$ and mass ordering for L=1300 km
- Wide band beam: coverage of first and second oscillation maximum will be crucial to resolve the degeneracy

DUNE Near Detector (ND) - Phase I

Constrain uncertainties for oscillation measurements -

- → Monitor unoscillated neutrino flux
- → Measure v-Ar cross section
- Prediction on neutrino spectra at FD

DUNE collaboration. Instruments 5 (2021) 4, 31

Located 574 m from the beam & 60 m underground

- 1. ND-LAr: 50t fiducial volume detector
 - Primary target, FD technology + pixelated readout
- 2. The muon spectrometer (TMS)
 o Measure µ's escaping the first detector
- SAND (tracker surrounded by an electromagnetic calorimeter and magnet)
 Monitor the neutrino beam

DUNE Far Detector (FD)

A massive 70 kt detector deployed in 4 modules

- Sanford Underground Research Facility (SURF)
- 1300 km apart from ND (Baseline)
- 1500 m underground (Background)
- 4 modules in two different caverns
 - $\circ~$ Modules 1, 2 and 3 \rightarrow LArTPCs
 - \circ Module 4 \rightarrow Module of Opportunity

The phase approach allows to:

- → Consider different technologies for the fourth module
- → Improvements can be applied in the second phase

LArTPC technology

LArTPC images

- → 60% of interactions at DUNE energy have final state pions
 - Measuring them will constrain DUNE interaction models!
- → LArTPC enables precise hadron reconstruction
- → Excelent e/ μ and e/ γ separation
- → High quality particle ID and energy reconstruction
- → Spatial resolution ~mm

1st ProtoDUNE run - Beam Event Example

ProtoDUNE-SP. JINST 15 (2020) *P*12004

Far Detector Horizontal Drift (FD-HD)

- Anode Plane Assembly (APA)
- Established and validated technology
- TPC size: (12x14x58.2) m³
- 4 horizontal drift regions (3.5 m)
- Drift Voltage 500 V/cm
- Vertical cathode and anode planes
- Photon detectors on the anode planes
- Photon detection based on X-ARAPUCAs

DUNE collaboration. JINST 15 (2020) T08010

Far Detector Vertical Drift (FD-VD)

ProtoDUNEs at CERN (HD & VD)

- 750 t LAr total (1/20 of one FD module)
- **Real-size** readout elements (APA, PDS, CRP)
- Successful phase-I (2018 2020)
- ProtoDUNE-HD campaign in 2024
 - Test upgraded components in their final design and take more beam data
- ProtoDUNE-VD campaign in 2025
 - Test the VD concept for the first time at large scale

Building DUNE: schedule

CP Sensitivity

- After 10 years exposure there is significant CP violation ($\delta_{CP} \neq 0, \pi$) discover potential across true values of δ_{CP} and for both hierarchies
- DUNE can establish CPV over 75% of δ_{CP} values at >3 σ (worst case scenario)
- DUNE can establish CPV over 50% of δ_{CP} values at >5 σ

DUNE collaboration. EPJC (2020) 80:978 & Neutrino 2024

Mass Ordering Sensitivity

Regardless of the values of the other oscillation parameters:

- DUNE can establish mass ordering at > 5σ in **3 years** (worst case scenario)
- Obtain a definitive answer for the mass hierarchy within **7 years**

DUNE collaboration. EPJC (2020) 80:978 & Neutrino 2024

Resolution to oscillation parameters

- World-leading precision (for long-baseline experiment) in θ_{13} and $\Delta m^2 \rightarrow$ comparisons with reactor measurements are sensitive to new physics
- Ultimate precision 6°-16° in δ_{CP}

DUNE collaboration. EPJC (2020) 80:978 & Neutrino 2024

DUNE Collaboration

- 1400 collaborators
- 200 institutions
- 30 countries + CERN

DUNE Collaboration Meeting May 2025 (Fermilab)

Summary

- DUNE is a long-baseline oscillation experiment & neutrino observatory
 - → Mass ordering & $\delta_{\rm CP}$, MeV-scale astrophysical neutrinos and proton decay & BSM
- Prototyping program very active and successful
- Construction work ongoing $\widehat{\mathbb{T}}$
- Start of Science by the end of this decade

DUNE talks/posters in the EPS 2025

Wednesday 9th July (T03 - Neutrino Physics)

- $16:20 \rightarrow \text{DUNE}$ Astrophysical and Atmospheric Neutrinos C. Sironneau (APC)
- 18:00 -> Analysis and simulation of low energy Michel electrons in ProtoDUNE T. Houdy (IJCLab)

Friday 11th July (T11 - Detectors)

- 8:30 → The DUNE Photon Detection System P. Sánchez Lucas (UGR)
- 9:06 \rightarrow The Charge Readout Planes of the DUNE Vertical Drift TPC F. Boran (CERN)
- 9:24 \rightarrow Signal and Power transmission over Fiber in the DUNE Far Detector S. Sacerdoti (APC)

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Backup slides

Inverted Ordering Sensitivities

