

EPS-HEP 2025

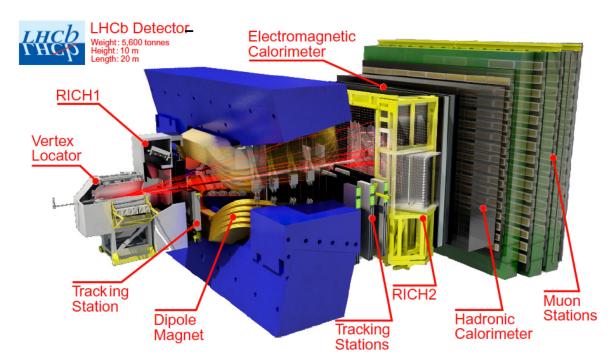
The LHCb PicoCal

Zhiyang Yuan

on behalf of the LHCb ECAL Upgrade II R&D Group Peking University, Beijing, China

- 1. Introduction
- 2. R&D and latest test beam results
 - 1) SpaCal-W with polystyrene fibers for LS3
 - 2) SpaCal-Pb with polystyrene fibers
 - 3) SpaCal-W with crystal fibers for LS4
 - 4) Shashlik with fast WLS fibers
- 3. Summary and conclusion

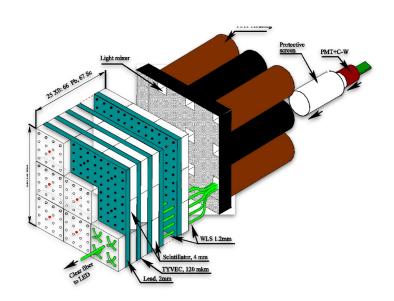
1. Introduction

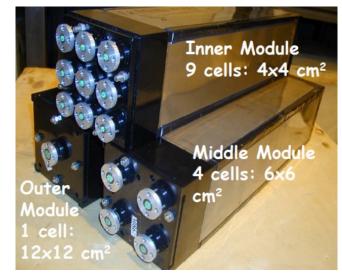

- 2. R&D and latest test beam results
 - 1) SpaCal-W with polystyrene fibers for LS3
 - 2) SpaCal-Pb with polystyrene fibers
 - 3) SpaCal-W with crystal fibers for LS4
 - 4) Shashlik with fast WLS fibers
- 3. Summary and conclusion

LHCb and physics goal

> LHCb(LHC beauty) is designed for heavy flavor physics at the LHC:

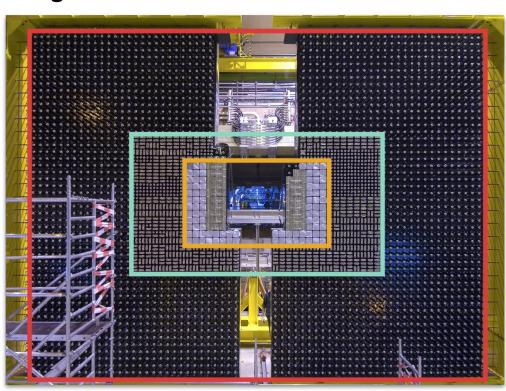
- Goal: to look for new physics in CP violation, rare decays and spectroscopy
- Also, excellent capabilities in other domains:
 - Electroweak physics
 - Heavy ions
 - Fixed target


Vertex:	$\sigma_{ m IP}=20\mu{ m m}$
Time:	$\sigma_{ au}=45 { m fs} { m for} \ B^0_s o J/\psi \phi \ { m or} \ D^+_s \pi^-$
Momentum:	$\Delta p/p = 0.4 \sim 0.6\%~(5-100 { m GeV}/c)$
Mass:	$\sigma_m=8~{ m MeV/c^2}~{ m for}~B o J/\psi{ m X}~(m_{J/\psi}~{ m constrainted})$
Hadron ID:	$arepsilon(K o K)\sim 95\%$ mis-ID $arepsilon(\pi o K)\sim 5\%$
Muon ID:	$arepsilon(\mu o\mu)\sim 97\%$ mis-ID $arepsilon(\pi o\mu)\sim 1-3\%$
ECAL:	$\Delta E/E = 10\%/\sqrt{E({ m GeV})} \oplus 1\%$


A single-arm forward spectrometer covering $2 < \eta < 5$

The Current LHCb ECAL

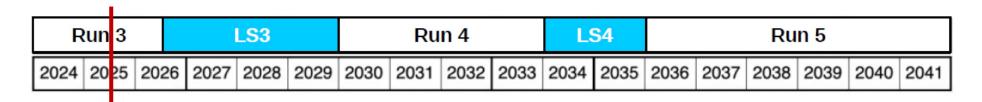
- > ECAL is essential to all measurements involving neutrals and electrons
- \succ Optimized for π_0 and γ identification in the few GeV to 100 GeV region at $2 imes 10^{32}
 m \ cm^{-2} s^{-1}$

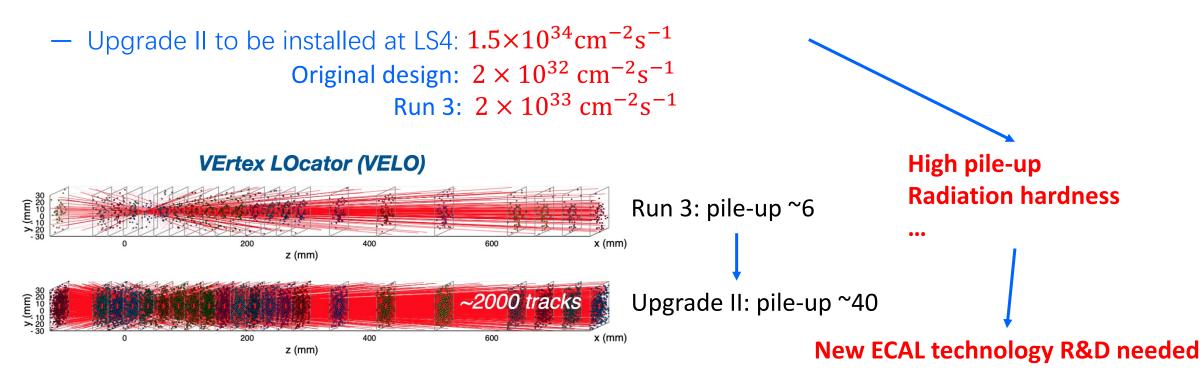


- Shashlik technology used
- Scintillator: Polystyrene pterphenyl - POPOP
- WLS fibres: Kuraray Y-11

- Radiation hard up to 40 kGy
- Energy resolution:

$$\sigma(E)/E$$
 $\approx 10\%/\sqrt{E(\text{GeV})} \oplus 1\%$


View from the back

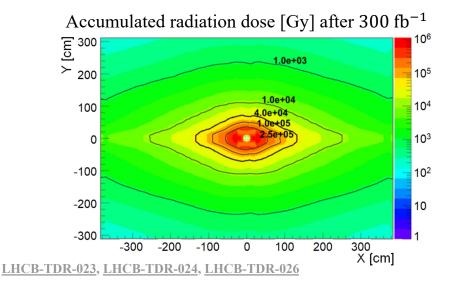

- Large array of $\approx 50~\text{m}^2$ with 3312 modules and 6016 channels

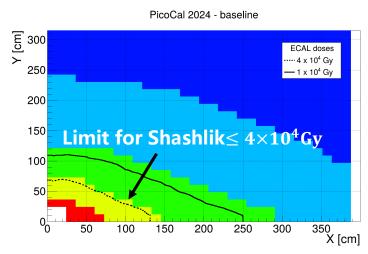
LHCB-TDR-023, LHCB-TDR-024, LHCB-TDR-026

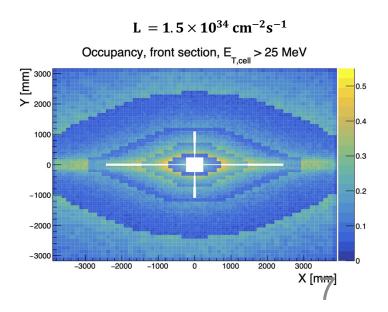
Motivation to upgrade

To fully use the opportunities provided by the HL-LHC for heavy flavor physics

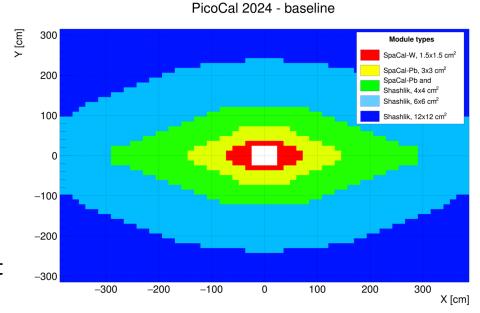
<u>LHCB-TDR-023</u>, <u>LHCB-TDR-024</u>, <u>LHCB-TDR-026</u>

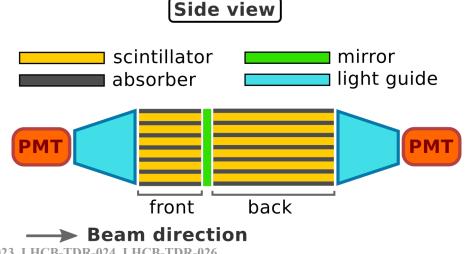

Motivation to upgrade

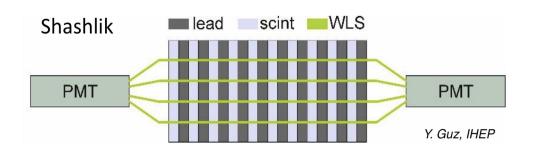

Requirements for the Upgrade II:


- \triangleright Radiation doses up to 1 MGy and $\le 6 \times 10^{15}$ 1 MeV neq/cm² in the centre for 300 fb⁻¹
 - New technologies required for the center
- > Pile-up mitigation crucial
 - Timing O(10 ps) precision
 - Increased granularity
 - longitudinal segmentation

Scintillators R&D needed

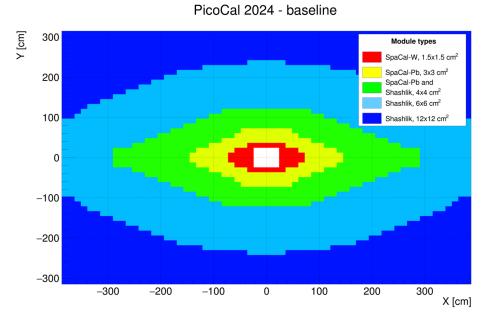

Technologies for ECAL Upgrade **II**


SPACAL technology for inner region.


- \rightarrow 1.5×1.5 cm² cell W absorber and crystal fibres
 - Development of radiation-hard crystal fibres
 - Polystyrene fibres for Run 4, then replaced by crystals
- \rightarrow 3×3, 4×4 cm² cell Pb absorber and plastic fibres:
 - Need radiation-tolerant plastic fibres

Shashlik technology for outer region

- \rightarrow 4×4, 6×6, 12×12 cm² cell
 - Timing improved with faster WLS fibres and double-sided readout



→ Beam direction

ECAL configuration to be installed during LS3

- > 176 new SpaCal modules in the inner region
 - → This region covers about 35% of photons and neutral pions from B-hadron decays over the ECAL acceptance
- The existing modules will be rearranged in rhombic areas (32 Shashlik modules with 4×4 cm² cell size will be replaced)

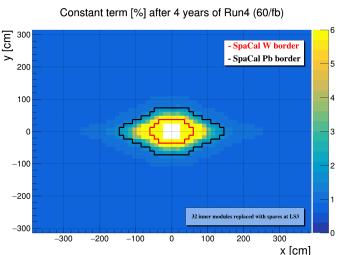
Cell size:	Modules:	Number of cells:
$2 \times 2 \text{ cm}^2$	16 new SpaCal-W modules with plastic fibres	576
$2 \times 2 \text{ cm}^2$	16 new SpaCal-W modules with plastic fibres - special shape	480
$3 \times 3 \text{ cm}^2$	104 new SpaCal-Pb modules with plastic fibres	1664
$3 \times 3 \text{ cm}^2$	40 new SpaCal-Pb modules with plastic fibres - special shape	480
$4 \times 4 \text{ cm}^2$	176 existing Shashlik modules	1584
$6 \times 6 \text{ cm}^2$	448 existing Shashlik modules	1792
$12 \times 12 \text{ cm}^2$	2'512 existing Shashlik modules	2512

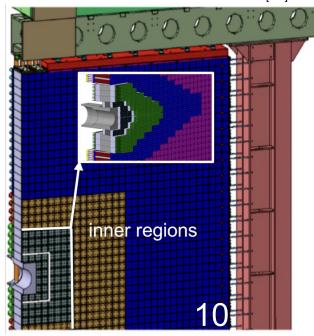
9

The Upgrade Strategy

Run	3 LS3			Run 4				LS4		Run 5							
2024 20	25	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

Run 3 in 2022-Q2/2026:

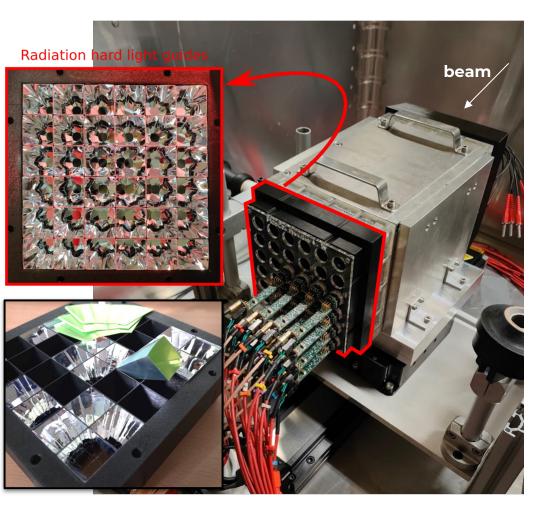

> Run with unmodified ECAL Shashlik modules at $L = 2 \times 10^{33} \, cm^{-2} s^{-1}$ (new 40 MHz readout)

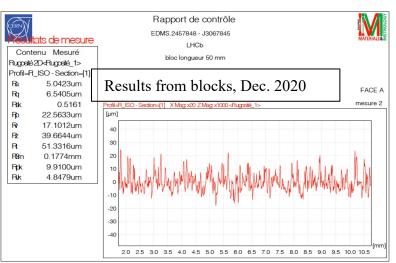

LS3 consolidation in Q3/2026-2029:

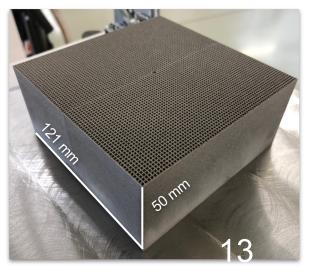
- Introduce single-section rad. tolerant SPACAL (2×2 and 3×3 cm 2 cells) in inner regions and rebuild ECAL in rhombic shape to improve performance at $L=2\times10^{33}$ cm $^{-2}$ s $^{-1}$
 - 32 SPACAL-W & 144 SPACAL Pb modules with plastic fibres compliant with Upgrade II conditions

LS4 Upgrade II in 2034-2035 (PicoCal):

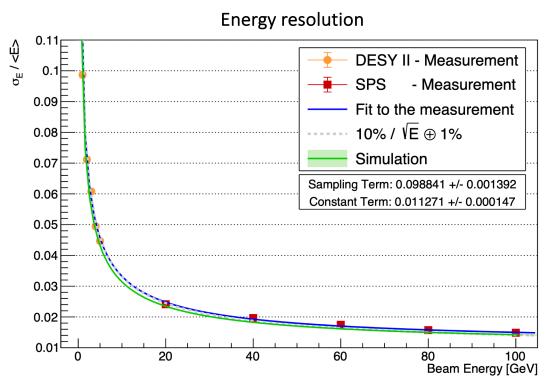
- > Introduce double-section rad. hard SPACAL (1.5×1.5, 3×3 & 4×4 cm² cells) and improve timing of Shashlik modules for a luminosity of up to $L = 1.5 \times 10^{34}$ cm⁻² s⁻¹
 - Innermost SPACAL-W modules equipped with crystal fibres
 - Include timing information and double-sided readout for pile-up mitigation

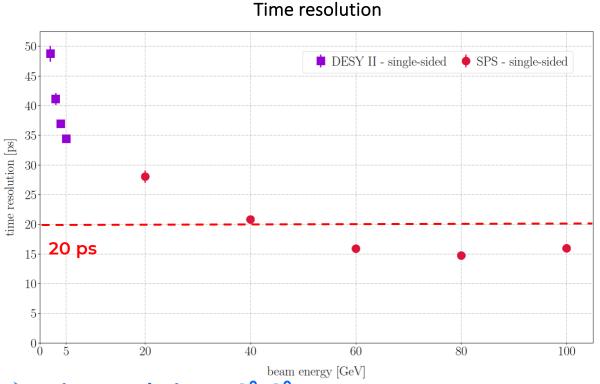



- 1. Introduction
- 2. R&D and latest test beam results
 - 1) SpaCal-W with polystyrene fibers for LS3
 - 2) SpaCal-Pb with polystyrene fibers
 - 3) SpaCal-W with crystal fibers for LS4
 - 4) Shashlik with fast WLS fibers
- 3. Summary and conclusion


- 1. Introduction
- 2. R&D and latest test beam results
 - 1) SpaCal-W with polystyrene fibers for LS3
 - 2) SpaCal-Pb with polystyrene fibers
 - 3) SpaCal-W with crystal fibers for LS4
 - 4) Shashlik with fast WLS fibers
- 3. Summary and conclusion

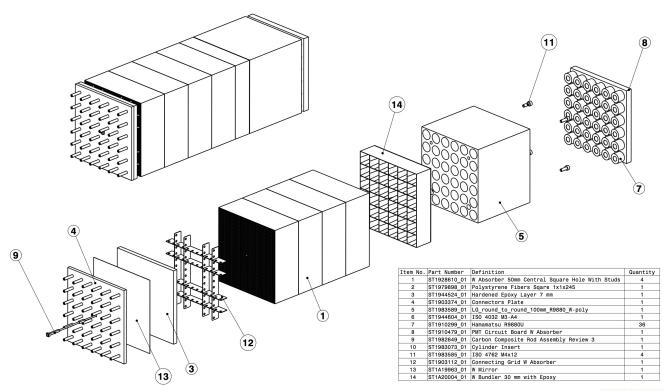
SpaCal - W Absorber - Polystyrene Fibres

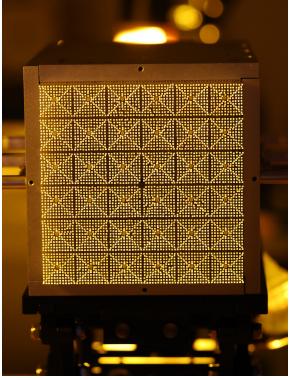



- Full size 121×121 mm² Module 0 assembled at CERN:
- **Passive materials:**
 - 3D-printed W absorber
 - $3\times50 \text{ mm} + 1\times40 \text{ mm}$ long blocks
- LS3 Enhancement R&D performed with EOS, Germany
 - Very good mean roughness $R_a = 5 \mu m$ achieved
 - Smooth surface mandatory not to damage fibres
 - Radiation-hard "hollow light guides" made of 3M ESR
- **Active materials:**
 - Single-cladded Kuraray SCSF-78 square fibres $1 \times 1 \text{ mm}^2$

SpaCal - W Absorber - Polystyrene Fibres

Energy resolution at 3°+3°:

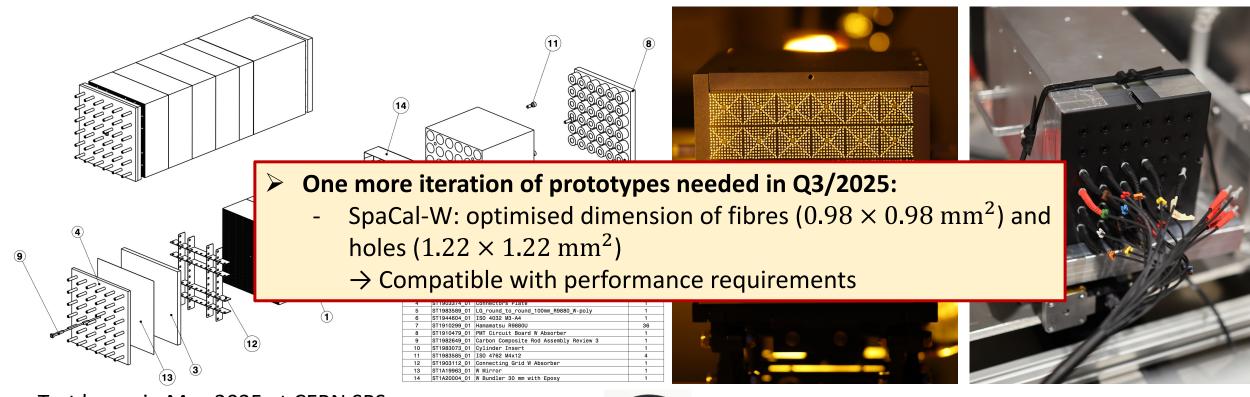

- Noise contribution subtracted
- R14755U-100 PMT
- Symmetric LGs: square to octagon
- Sampling term: $9.9 \pm 0.1 \%$
- Constant term: $1.13 \pm 0.01 \%$
- Very good agreement with simulation


Time resolution at 3°+3°:

- Multi-Anode(R7600U-M4) PMT with 4 channels
- Asymmetric LGs: square to square
- Single-sided readout
- Time resolution above 40 GeV: better than 20 ps

Performance in line with targets

Ongoing R&D: Assembly for LS3



Test beam in May 2025 at CERN SPS:

- First test of full Run 4 chain with new prototypes:
 - W absorbers
 - 3HF green plastic fibres (square fibres $1 \times 1 \text{ mm}^2$)
 - Optics assembly with bundlers and long "hollow" light guides
 - R9880U PMTs

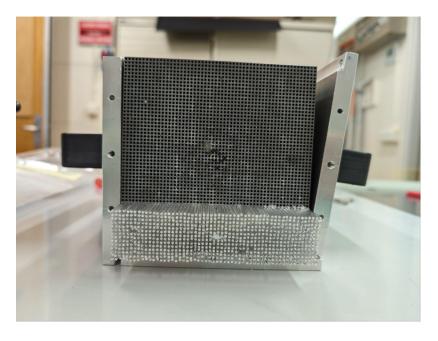
- Cable clipping circuits
- 10 meter signal cables
- Read-out with Run 3 & 4 front-end boards electronics

Ongoing R&D: Assembly for LS3

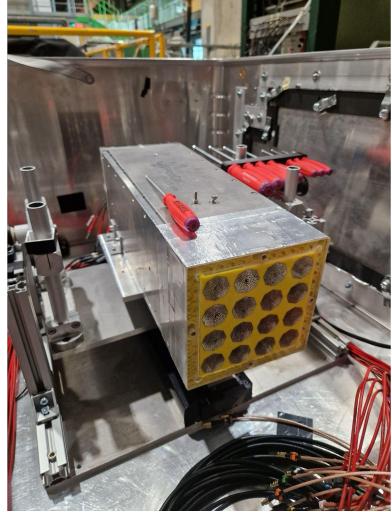
Test beam in May 2025 at CERN SPS:

- First test of full Run 4 chain with new prototypes:
 - W absorbers
 - 3HF green plastic fibres (square fibres $1 \times 1 \text{ mm}^2$)
 - Optics assembly with bundlers and long "hollow" light guides
 - R9880U PMTs

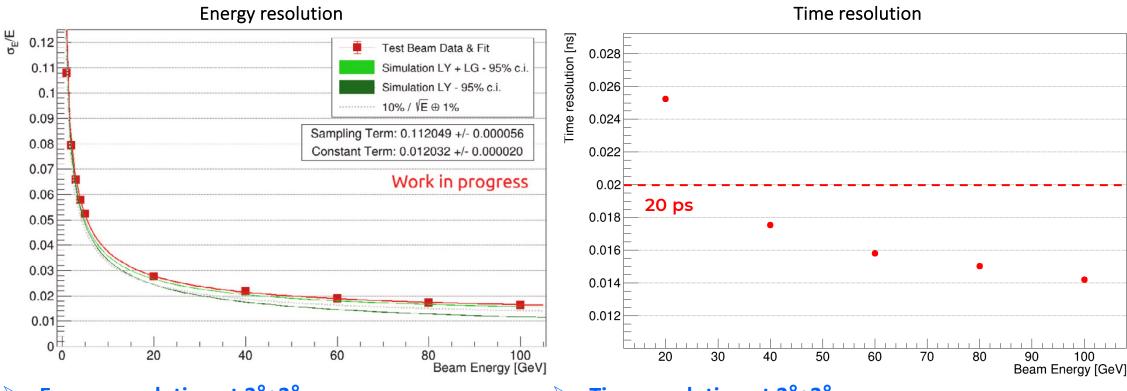
- Cable clipping circuits
- 10 meter signal cables
- Read-out with Run 3 & 4 front-end boards electronics


- 1. Introduction
- 2. R&D and latest test beam results
 - 1) SpaCal-W with polystyrene fibers for LS3
 - 2) SpaCal-Pb with polystyrene fibers
 - 3) SpaCal-W with crystal fibers for LS4
 - 4) Shashlik with fast WLS fibers
- 3. Summary and conclusion

SpaCal - Pb Absorber - Polystyrene Fibres


➤ Module 0 prototype assembled in June 2024

- Pb casting technology for absorber production
- Kuraray 3HF green fibres Ø 1.5 mm



SpaCal - Pb Absorber - Polystyrene Fibres

- Energy resolution at 3°+3°:
 - R11187 PMT
 - Symmetric LGs
 - Single-sided readout
 - Sampling term: $11.2 \pm 0.1 \%$
 - Constant term: $1.20 \pm 0.01 \%$
 - Very good agreement with simulation

Time resolution at 3°+3°:

- Multi-Anode(R7600U-20) PMT with 4 channels
- Asymmetric LGs
- Double-sided readout
- Time resolution above 20 GeV: better than 20 ps

Performance in line with targets

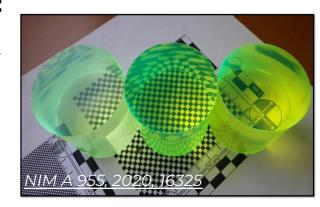
Ongoing R&D: Plastic Scintillator

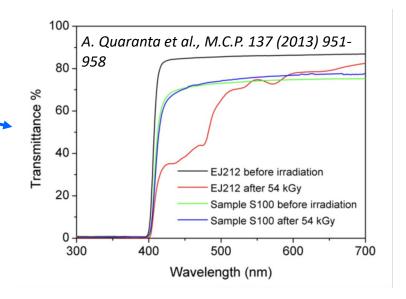
3HF-based green fibres are a candidate material for the Upgrade II:

- Better radiation tolerance than SCSF-78 matches requirements
- However, longer decay time affects time resolution

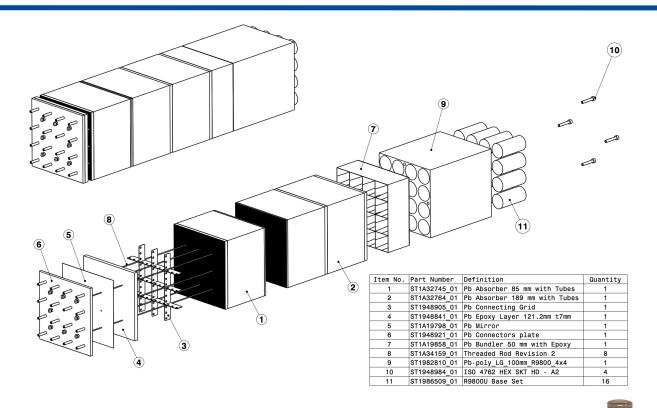
Formulations 1)

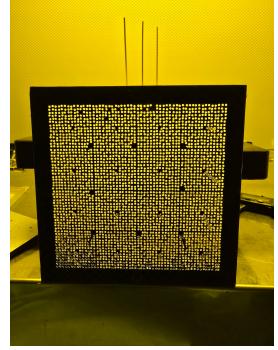
Kurarav Datasheet

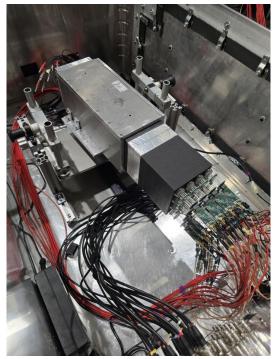

Description		Emission		Decay Time	Att.Leng.2)	
Description	Color	Spectra	Peak[nm]	[ńs]	[m] ັ	
SCSF-78	blue	See the	450	2.8	>4.0	
SCSF-81	blue	following	437	2.4	>3.5	
SCSF-3HF(1500)	green	figure	530	7	>4.5	


Required:

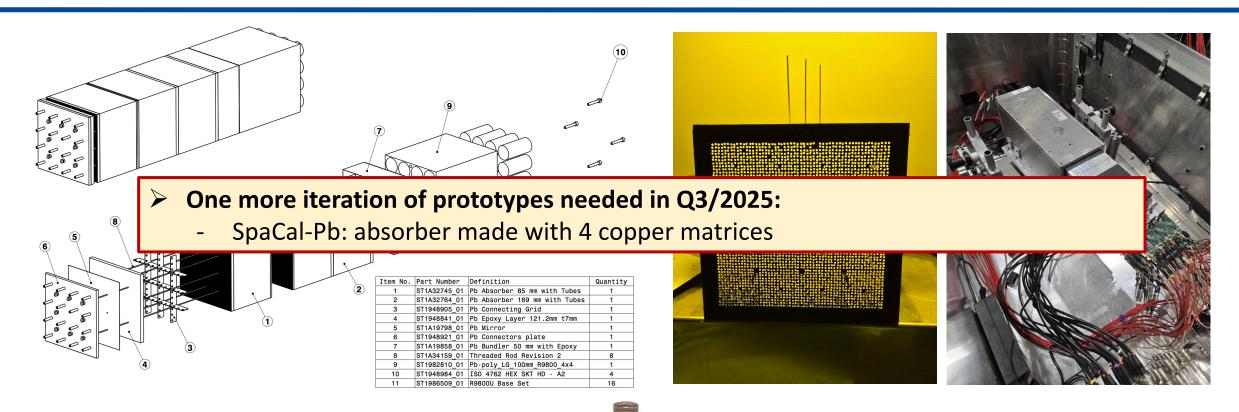
- Radiation hardness up to 100-200 kGy (hadrons)
- Fast timing performance
- Cost effectiveness


R&D ongoing on alternative materials:


- Hosts other than polystyrene
- Green emitters
- Scintillating glasses



Ongoing R&D: Assembly for LS3


Test beam in May 2025 at CERN SPS:

- First test of full Run 4 chain with new prototypes:
 - Pb absorbers
 - 3HF green plastic fibres (round fibres Ø=1.5 mm)
 - Optics assembly with bundlers and long "hollow" light guides
 - R9800 PMTs

- 10 meter signal cables
- Read-out with Run 3 & 4 front-end boards electronics

Ongoing R&D: Assembly for LS3

Test beam in May 2025 at CERN SPS:

- First test of full Run 4 chain with new prototypes:
 - Pb absorbers
 - 3HF green plastic fibres (round fibres Ø=1.5 mm)
 - Optics assembly with bundlers and long "hollow" light guides
 - R9800 PMTs

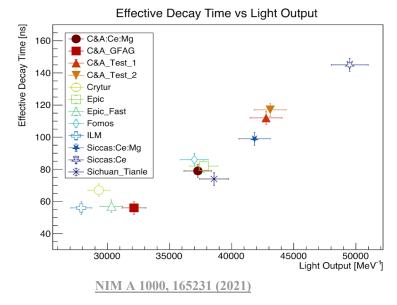
- Cable clipping circuits
- 10 meter signal cables
- Read-out with Run 3 & 4 front-end boards electronics

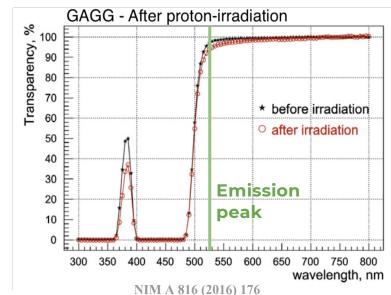
- 1. Introduction
- 2. R&D and latest test beam results
 - 1) SpaCal-W with polystyrene fibers for LS3
 - 2) SpaCal-Pb with polystyrene fibers
 - 3) SpaCal-W with crystal fibers for LS4
 - 4) Shashlik with fast WLS fibers
- 3. Summary and conclusion

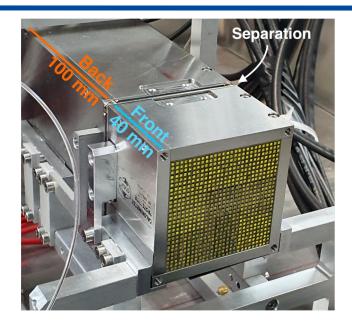
SpaCal - W Absorber - Crystal Fibres

SPACAL prototype with W absorber and garnet crystals

Module details:

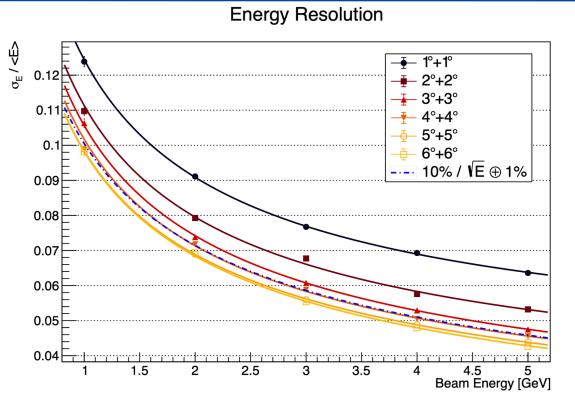

- Absorber in pure tungsten 19 g/cm³
- 9 cells of 1.5×1.5 cm²


$$(R_M \sim 1.5 \text{ cm})$$


-4+10 cm long

$$(7 + 18 X_0)$$

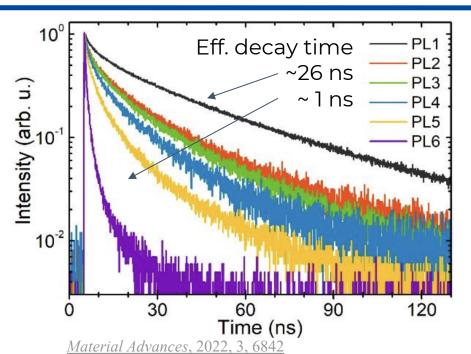
- Reflective mirror between sections
- Squared garnet crystal fibres $(1 \times 1 \text{ mm}^2 \text{ cross section})$

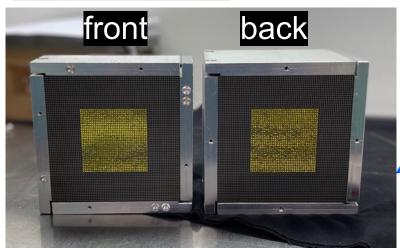


GAGG as scintillating material

- \rightarrow High light output and relatively fast decay time (\sim 50 ns)
 - Tunable scintillation properties
- Radiation hardness tested up to 1 MGy

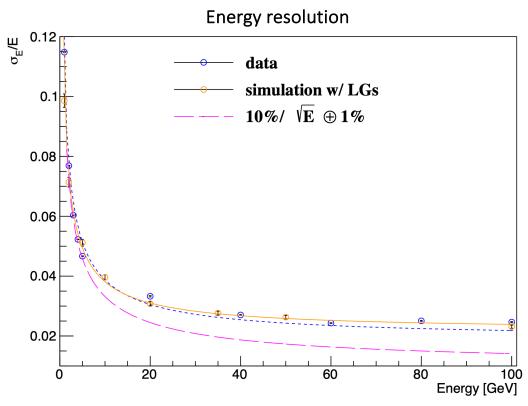
SpaCal - W Absorber - Crystal Fibres




- Resolution improves increasing the incidence angle
- Energy resolution at 3°+3°:
 - Sampling term: $10.2 \pm 0.1 \%$
 - Constant term: 1-2%

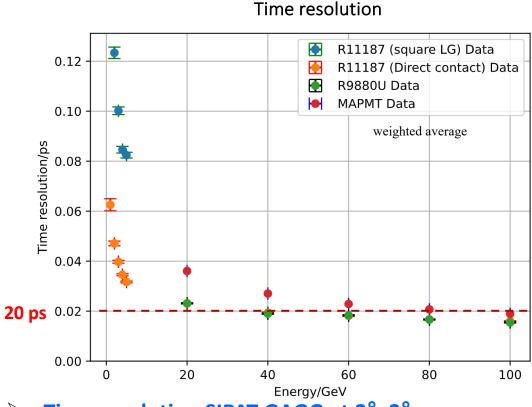
Time Resolution C&A GFAG Time resolution [ps] Weighted Average Front Section Back Section 20 ps Beam Energy [GeV]

- > Time stamps obtained using CFD algorithm
- Time resolution C&A GAGG at 3°+3°:
 - Measurement in direct contact with MCD(R7600U-20) PMTs for ultimate performance
 - Double-sided readout
 - $-18.5 \pm 0.2 \text{ ps } @ 5 \text{ GeV}$


Ongoing R&D: Accelerating Scintillation

- \triangleright The issue: current commercial GAGG has scintillation decay time $> 40~\mathrm{ns}$
 - Mitigate spill-over effect on time resolution
- Novel GAGG compositions developed to quench scintillation
 - Light yield reduced
 - Decay time accelerated
 - Time resolution kept competitive
- R&D to produce large-size and homogeneous Czochralski ingots
- Collaboration with:
 - SiPAT, China
 - FZU and Crytur, Czech Republic
 - European project TWISMA including CERN, ILM & UCB, and ISMA
- > The Second prototype in June 2024
 - SiPAT GAGG with decay time \sim 20 ns
 - 3D-printed absorber with LaserAdd, China
 - Under characterisation in testbeam

SpaCal - W Absorber - Crystal Fibres

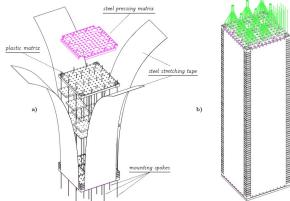


▶ Energy resolution at 3°+3°:

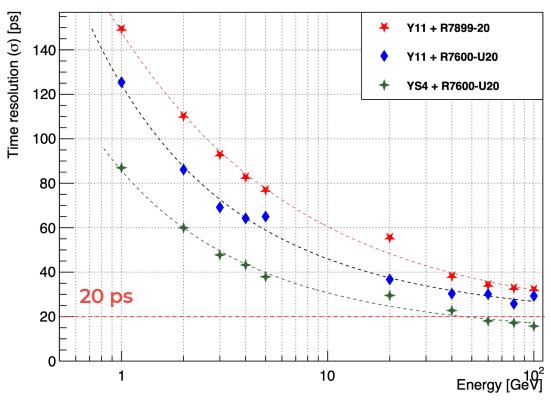
— Sampling term: $10.6 \pm 0.2 \%$

— Constant term: ∼2 %

First measurements performed with non-optimal configuration degradation of energy and time resolution expected


➤ Time resolution SIPAT GAGG at 3°+3°:

- R11187 (Direct contact) and R9880U have similar performance (<20 ps when > 20 GeV)
- MAPMT and R11187 (square LG and only front part) much worse in time resolution


- 1. Introduction
- 2. R&D and latest test beam results
 - 1) SpaCal-W with polystyrene fibers for LS3
 - 2) SpaCal-Pb with polystyrene fibers
 - 3) SpaCal-W with crystal fibers for LS4
 - 4) Shashlik with fast WLS fibers
- 3. Summary and conclusion

Shashlik R&D

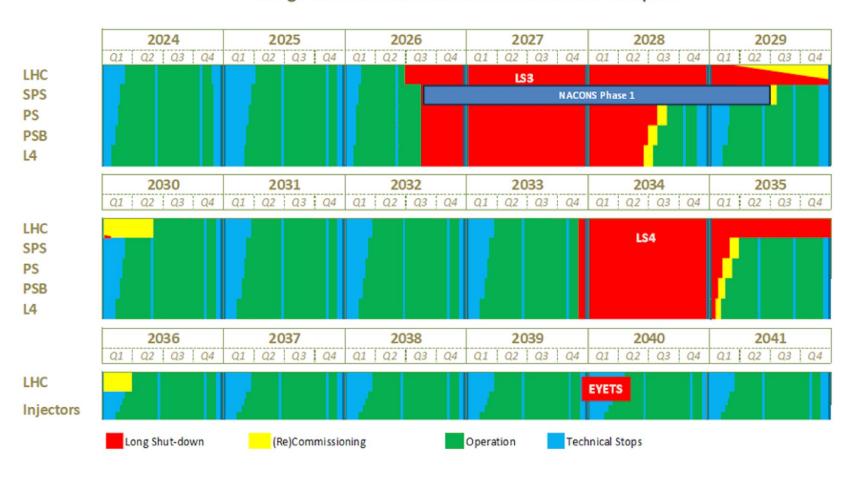
- Current LHCb Shashlik modules have good time properties
- Improvements:
 - Replacing WLS fibres (Kuraray)
 - Y-11 (7 ns decay time) ← Current LHCb
 YS-2 (3 ns decay time)
 YS-4 (1.1 ns decay time)
 - Double-sided readout
- Time resolution at 3°+3°:
 - Current(R7899-20) and faster(R7600-20) PMT
 - Time resolution above 40 GeV: better than 20 ps (single-sided readout)

Time resolution - Single-sided readout

- 1. Introduction
- 2. R&D and latest test beam results
 - 1) SpaCal-W with polystyrene fibers for LS3
 - 2) SpaCal-Pb with polystyrene fibers
 - 3) SpaCal-W with crystal fibers for LS4
 - 4) Shashlik with fast WLS fibers
- 3. Summary and conclusion

Summary and conclusion

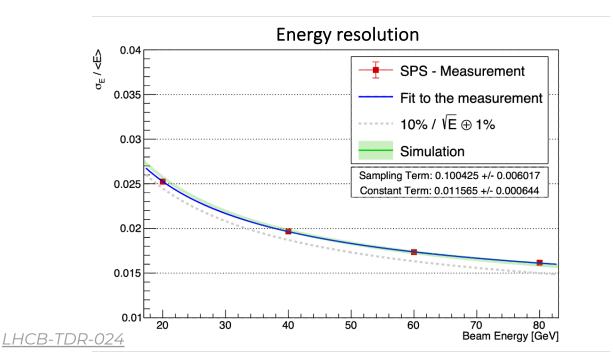
The LHCb ECAL needs to be enhanced and upgraded during the LHC LS3 and LS4

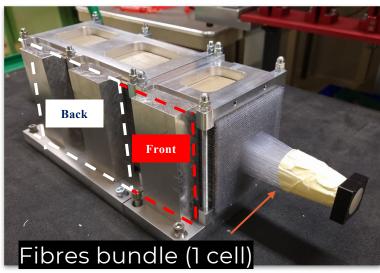

- > The innermost 176 modules need to be replaced in LS3 due to radiation damage
 - SpaCal with Tungsten/Lead absorber and plastic fibres meets the requirements
- ➤ The Upgrade II in LS4 introduces picosecond-level timing and more demanding radiation hardness requirements
 - Better than 20 ps achieved with Shashlik and SpaCal at high energy
- Comprehensive R&D ongoing (also interesting for other future projects)
 - Test beam measurements with prototypes
 - Detailed Monte Carlo simulations
 - Study of novel absorber production techniques
 - Study of suitable LGs, bundlers, PMTs and development of readout electronics
 - Investigation of new radiation-hard and fast scintillators

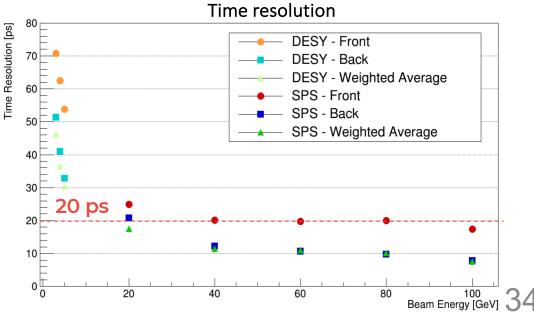
Back up

Updated CERN accelerator schedule

Long Term Schedule for CERN Accelerator complex

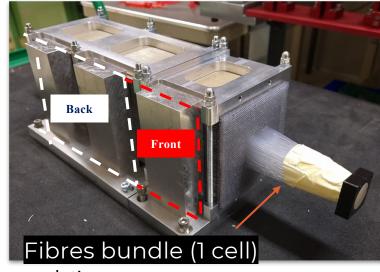

- Run 3 extended till end of June 2026
- LHC restart for Run 4 in 2030
- LHC LS4 moved by one year to 2034-35
- LS5 becomes EYTES
- Also impact on SPS test beams!


11/10/2024 General news Philipp Roloff


SpaCal - Pb Absorber - Polystyrene Fibres

Pb absorber and polystyrene fibres:

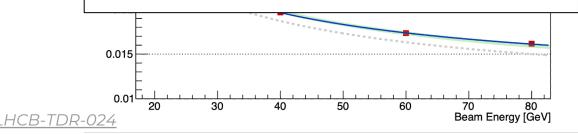
- -8 + 21 cm long $(7 + 18 X_0)$
- Reflective mirror between sections
- Kuraray SCSF-78 round fibres $\emptyset = 1.0 \text{ mm}$


SpaCal - Pb Absorber - Polystyrene Fibres

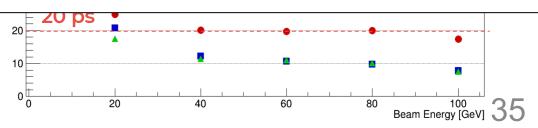
Pb absorber and polystyrene fibres:

- -8 + 21 cm long $(7 + 18 X_0)$
- Reflective mirror between sections
- Kuraray SCSF-78 round fibres $\emptyset = 1.0 \text{ mm}$

Energy resolution


Performance in line with targets

Time resolution


Energy resolution at 3°+3°:

- Noise contribution subtracted
- Sampling term: $10.0 \pm 0.6 \%$
- Constant term: $1.16 \pm 0.06 \%$
- Very good agreement with simulation

> Time resolution at 3°+3°:

- Measurement in direct contact with fast MCD(R11187) PMTs
- Double-sided readout
- Time resolution above 20 GeV: better than 20 ps

