

S HEP2025

MARSEW

Investigating charm-quark dynamics in the QGP via the charm-hadron elliptic flow in Pb–Pb collisions with ALICE

Marcello Di Costanzo on behalf of the ALICE Collaboration, 09/07/2025

Heavy flavours as probes for QGP

- Quark-Gluon Plasma (QGP)
 - → Colour-deconfined state of matter expected by Lattice QCD to exist at temperature T > 155 MeV
 - → Conditions can be attained in ultrarelativistic heavy-ion collisions
 - \rightarrow At LHC, QGP is formed after $\tau \approx 0.3$ fm/c
 - → With decreasing temperature, a dense gas of hadrons is formed
- Heavy quarks are produced from hard scatterings before the QGP formation
 - \rightarrow Interaction with medium constituents
 - → Competing hadronization mechanisms
 - Fragmentation
 - Coalescence
- Heavy quark interactions with the medium described by the diffusion coefficient D_s

0.20

0.25

0.30

Temperature (GeV)

0.35

0.40

The elliptic flow observable

- In non-central collisions the overlap region of colliding nuclei features an ellipsoidal shape
 - → **Non-isotropic** pressure gradients
- Modulation of particle yields in momentum space
 as a function of $\phi \psi_{RP}$ (Reaction Plane)
 - \rightarrow Description via a **Fourier series** expansion

$$\frac{\mathrm{d}N}{\mathrm{d}\Phi} = \frac{N_0}{2\pi} (1 + 2v_2 \cos[2(\Phi - \Psi_{\mathrm{RP}})] + \dots)$$

D⁰, **D**⁺, **D**_s⁺, **J/\psi** and **A**_c⁺ ν ₂ presented for different collision centralities

Expanding fireball

→ c- and b-quarks
 acquire flow due to
 interaction with
 medium constituents

→ C- and b-quarks acquire flow due to interaction with medium constituents

medium constituents

interaction with

medium constituents

A Large Ion Collider Experiment

Signal extraction

- Machine learning multiclass BDT classification
 - → **Displaced decay topology and PID** information on daughters are exploited
 - → Separation between prompt (P), non-prompt (NP) and bkg candidates
- v₂ vs. mass spectrum associated to each invariant mass spectrum
- Simultaneous fit of signal (S) and bkg (B) v₂ and mass distributions

$$v_2(M) = v_2^S \frac{S}{S+B}(M) + v_2^B(M) \frac{B}{S+B}(M)$$

marcello.di.costanzo@cern.ch Turin Polytechnic & INFN To

Prompt and non-prompt v_2 extraction

25

Non-prompt fraction estimated via a data-driven method

$$\begin{pmatrix} (\operatorname{Acc} \times \varepsilon)_{1}^{\mathrm{P}} & (\operatorname{Acc} \times \varepsilon)_{1}^{\mathrm{NP}} \\ \vdots & \vdots \\ (\operatorname{Acc} \times \varepsilon)_{N}^{\mathrm{P}} & (\operatorname{Acc} \times \varepsilon)_{N}^{\mathrm{NP}} \end{pmatrix} \times \begin{pmatrix} N^{\mathrm{P}} \\ N^{\mathrm{NP}} \end{pmatrix} - \begin{pmatrix} Y_{1} \\ \vdots \\ Y_{N} \end{pmatrix} = \begin{pmatrix} \delta_{1} \\ \vdots \\ \delta_{N} \end{pmatrix}$$

Acceptance and efficiency for the considered cutsets (N) Corrected yields Residuals ALICE . HEP 05 (2)

- The **corrected yields** are obtained via a χ^2 minimization
- The measured v_2 for a given cutset is expressed as:

$$v_2^{\text{obs}} = f_{\text{NP}} \cdot v_2^{\text{NP}} + (1 - f_{\text{NP}}) \cdot v_2^{\text{P}}$$

A **linear fit** is performed to extract the prompt and non-prompt values

Å 0.30 $3.5 < p_{_{T}} < 4~{\rm GeV}/c$ 0.25 Data Prompt D⁰ 0.20 Non-prompt D⁰ 0.15 Total 0.10 0.05 021) 220 ALICE JHEP 10 (2023) 092 0.00 BDT-based selection _< 0.25⁺ |4∇| ALICE Preliminary Pb-Pb, 30-40%, $\sqrt{s_{_{
m NN}}}$ = 5.36 TeV $D^0 \rightarrow K^- \pi^+$ and charge conj. New < p < 5 GeV/c 0.10 0.05 Linear fit $\gamma^{2}/ndf = 0.36$ 68% confidence level 0.00 02 0.6 0.8

ALI-PREL-596318

ALICE Preliminary

Pb–Pb $\sqrt{s_{NN}}$ = 5.36 TeV, 30–40%

 $D^0 \rightarrow K^- \pi^+$ and charge conj

s 0.40 ×

Non-prompt fraction

• Positive v_2

- Positive v_2
- First D⁰ measurement **below 1 GeV/c**

- Positive v_2
- First D⁰ measurement **below 1 GeV/c**
- Excellent agreement between D^0 and D^+ over the measured p_{T} range

- Positive v_2
- First D⁰ measurement below 1 GeV/c
- Excellent agreement between D^0 and D^+ over the measured p_T range

• Hint of **smaller**
$$D_s^+ v_2$$
 at low p_T

 \rightarrow different contribution of hadronic phase?

- Positive v_2
- First D⁰ measurement below 1 GeV/c
- Excellent agreement between D^0 and D^+ over the measured p_T range

• Hint of **smaller**
$$D_s^+ v_2$$
 at low p_T

- \rightarrow different contribution of hadronic phase?
- Inclusive J/ ψv_2 lower than prompt D v_2 at intermediate p_T

L. Micheletti's talk, Wed., T04, 16:40

- Maximum v_2 values **not far from pions**
 - \rightarrow (partial) charm thermal equilibration

ALI-PREL-596279 marcello.di.costanzo@cern.ch Turin Polytechnic & INFN To

- Maximum v_2 values **not far from pions**
 - \rightarrow (partial) charm thermal equilibration
- Clear mass ordering below 3 GeV/c
 - → Expected from hydrodynamic picture
 - $\rightarrow m(J/\psi) > m(D_{s}^{+}) > m(D^{0}) \approx m(D^{+})$

Meson elliptic flow – hadronization

- Maximum v_2 values **not far from pions**
 - \rightarrow (partial) charm thermal equilibration
- Clear mass ordering below 3 GeV/c
 - → Expected from hydrodynamic picture
 - $\rightarrow \quad m(J/\psi) > m(D_s^+) > m(D^0) \approx m(D^+)$
- Larger v_2 for open- than hiddencharm states in $3 < p_T < 8$ GeV/c
 - → Expected by hadronization via **coalescence**

Meson elliptic flow – hadronization

- Maximum v_2 values **not far from pions**
 - \rightarrow (partial) charm thermal equilibration
- Clear mass ordering below 3 GeV/c
 - → Expected from hydrodynamic picture
 - $\rightarrow \quad m(J/\psi) > m(D_s^+) > m(D^0) \approx m(D^+)$
- Larger v_2 for open- than hiddencharm states in $3 < p_T < 8$ GeV/c
 - → Expected by hadronization via **coalescence**
- **Common** $v_2 > 0$ for $p_T > 8$ GeV/c
 - \rightarrow In-medium energy loss
 - \rightarrow Fragmentation dominates over coalescence

Meson elliptic flow – centrality dependence

- **Centrality dependence** of v_2
 - \rightarrow transport properties of the QGP
- Flatter trend in 60-80%
 - → Sensitive to thermal equilibration of charm quark in a shorter lived fireball?

Comparison to model predictions – Prompt D⁰

- $D^0 v_2$ compared with **transport model** predictions
- Model differences:
 - \rightarrow Balance of coalescence and fragmentation
 - \rightarrow Hadronic phase implementation
 - \rightarrow Diffusion coefficient D_s
 - \rightarrow Underlying hydrodynamics
- High data precision: significant constraints to model features

TAMU: <u>PRL 124 (4) (2020)</u> LGR: <u>EPIC 80 (7) (2020)</u> PHSD: <u>PRC 93 (3) (2016)</u> CATANIA: <u>PRC, 96 (4) (2017)</u> POWLANG: <u>EPIC 82 (2022) 607</u> LANGEVIN: <u>EPIC 81 (2021) 1035</u> LBT+PNP: <u>PLB 838 (2023) 137733</u>

Comparison to model predictions – Prompt D_{c}^{+}

POWLANG: <u>EPIC 82 (2022) 607</u>

- D_s⁺ vs. D⁰ sensitive to: strange quark dynamics in QGP medium, coalescence and hadronic phase interactions
- TAMU predicting opposite D⁺/D⁰ hierarchy with respect to data? M. He et al. PRL 110 (2013) 112301

- First prompt charm baryon v₂ measurement in Pb–Pb collisions
- **Compatible with D**⁰ within uncertainties for $p_T < 4 \text{ GeV/c}$
- First evidence of meson-baryon splitting in the charm sector with 3.6 σ significance for $p_T > 4$ GeV/c

- Comparison with light flavour hadrons
- Mass ordering at low p_{T} :
 - $\rightarrow \quad \nu_{2}(\mathsf{K}_{s}^{0}) > \nu_{2}(\Lambda) > \nu_{2}(\mathsf{D}^{0}) \sim \nu_{2}(\Lambda_{c}^{+})$
- Baryon-meson splitting at higher p_T, favouring coalescence hypothesis

- Most models are able to describe the $\Lambda_c^+ v_2$ within uncertainties
 - \rightarrow **Uncertainty reduction** expected from analysis of 2024 and 2025 data samples
- New inputs for hadronization implementation in theoretical models

Towards the beauty sector

- Positive non-prompt v_2 , lower than the prompt one
- $\blacksquare \quad m_{\rm b}^{>>} m_{\rm c}^{\rightarrow} \textbf{longer} \text{ relaxation time}$

ALI-PREL-596363

marcello.di.costanzo@cern.ch Turin Polytechnic & INFN To

• Accessing beauty baryon v_2 for the first time ever via non-prompt $\Lambda_c^+ v_2$

• Consistent v_2 for non-prompt for D⁰ and Λ_c^+

ALI-PREL-596368

Summary and outlook

- Information on **charm quark interaction** with the medium through charm hadron v_2 measurements
- Prompt D-meson v₂ measurements in Pb–Pb from 30 to 80% centrality
 - \rightarrow First measurement **below 1 GeV/c** for D⁰
 - \rightarrow Decreasing v_2 from semicentral to peripheral collisions
 - → Hint of $v_2(D_s^+) < v_2(D^0)$ in semi-central collisions
- First measurements of $\Lambda_c^+ v_2$ in Pb–Pb in 30-50%
 - → Baryon-meson splitting observed in HF sector
- Analyzed int. luminosity of **1.5 nb**⁻¹, more to come:
 - → Int. lumi. 2024: 1.5 nb⁻¹, expected int. lumi. 2025: 2.6 nb⁻¹

Thank you for the attention!

Politecnico di Torino INFN

Transport model properties

Models	Bulk	nPDFs	HQ interactions	Hadronization	Hadron phase	D _s	Ref.
CATANIA	Boltzmann, quasi-particle s		Langevin	Recomb. (Wigner) + Frag.	No	3.5-4.5	Phys. Rev. C 96 (2017) 044905 (R _{AA}) Phys. Lett. B 805 (2020) 135460 (v ₂)
DAB-MOD (M&T)	Hydro viscous (v-USPhydro)		Langevin	Recomb. (ICM) + Frag.	No	2.5	Phys. Rev. C 102, 024906 (2020)
LBT	Hydro viscous (VISHNew)	Yes	Boltzmann coll+rad	Recomb. (ICM) + Frag.	No	2	Phys. Rev. C 94 (2016) 014909 Phys. Lett. B 777 (2018) 255
LIDO	Hydro viscous		Boltzmann Langevin coll+rad	Recomb. (ICM) + Frag.	Yes	2-4	Phys. Rev. C 100, 064911
LGR	Hydro viscous	Yes	Langevin coll+rad	Recomb. + Frag.		2-4	Eur. Phys. J. C, 80 (2020) 671
MC@sHQ+ EPOS2	Hydro ideal (EPOS)	Yes	Boltzmann coll+rad	Recomb. (ICM) + Frag.	No	1.5	Phys. Rev. C 89 (2014) 014905
PHSD	Off-shell parton transport	Yes	Collisional	Recomb. (ICM) + Frag.	Yes	4	Phys. Rev. C 93, 034906 (2016) (LHC) Phys. Rev. C 92, 014910 (2015)
POWLANG	Hydro viscous (ECHO-QGP)	Yes	Langevin coll	In-medium strings	No	7	Eur. Phys. J. C 75 (2015) 121 (R _{AA}) JHEP 02 (2018) 043 (v ₂)
TAMU	Hydro ideal	Yes	Langevin T-matrix (coll)	Recomb. (RRM) + Frag.	Yes	4	Phys. Rev. Lett. 124, 042301 (2020)

Comparison to model predictions – Prompt D⁰

- $D^0 v_2$ compared with transport models predictions
 - \rightarrow Model differences: coalescence and hadronic phase implementation, adoption of *n*PDFs, underlying hydro
 - \rightarrow High data precision allows for constraints to D_s
- LGR, Catania, and LBT+PNP overestimate data for $p_{T} < 3$ GeV/c
- Good agreement for TAMU, Catania, LGR in the range $3 < p_T < 5$ GeV/c
 - → Suggest the critical role of coalescence/recombination and of space-momentum correlations
- All models except PHSD describe data within uncertainty for $p_{T} > 5$ GeV/c
 - \rightarrow Fragmentation dominates hadronization at high $p_{\rm T}$

 TAMU: PRL 124 (4) (2020) LGR: EPIC 80 (7) (2020) PHSD: PRC 93 (3) (2016)

 CATANIA: PRC, 96 (4) (2017) POWLANG: EPIC 82 (2022) 607

The scalar product technique

Three detectors define 3 sub-events A, B, C, where M represents the **particle multiplicity** and Q_n the **harmonic flow vector** defined as

$$\mathbf{Q}_n = \sum_{k=1}^M w_k e^{in\phi_k}$$

Resolution term, accounts for **finite angular resolution** in the estimate of the symmetry plane harmonic through the flow vector due to **finite particle multiplicity**

Number of constituent-quark scaling

 $v_2 \{2, |\Delta \eta| > 0.8\}, \sqrt{s_{NN}} = 5.02 \text{ TeV}$

2 3 4 5

 kE_T/n_o (GeV/c)

^{II} K⁰_S JHEP 05 (2023) 243

■ Λ(Λ) JHEP 05 (2023) 243

 v_2/n_q No clear universal scaling of ALICE Preliminary 0.18 v_2/n_a between mesons and Pb-Pb, 30-50% 0.16E baryons observed in LF or HF 0.14E $v_2 \{\text{SP}, |\Delta \eta| > 1.3\}, \sqrt{s_{NN}} = 5.36 \text{ TeV}$ 0.12 Prompt Λ_c^+ D^0 Prompt D⁰ ٨ K₀^s 0.08E 0.06E ū u u 0.04E s ร d 0.02E 3×10⁻² $10^{-1}2 \times 10^{-1}$

ALI-PREL-598884

10

- Positive non-prompt v_2 , lower than the prompt one
- Models compatible with data within uncertainties

TAMU: <u>PRL 124 (4) (2020)</u> LIDO: <u>PRC 100 (2019) 064911</u> LGR: <u>EPIC 80 (2020) 12, 1113</u>

ALI-PREL-596358

marcello.di.costanzo@cern.ch Turin Polytechnic & INFN To