Testing perturbative QCD calculations with charm-tagged jets and correlations of charm hadrons with charged particles

> Samuele Cattaruzzi* on behalf of the ALICE Collaboration

HEP2025

ARSEILLE

ALICE

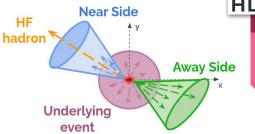
*University of Trieste and INFN, Trieste (Italy)

Heavy-flavour hadron production

Charm quark mass ~1.3 GeV/ c^2 , **beauty quark** mass ~4.2 GeV/ c^2

 \rightarrow produced in hard parton-parton scattering processes in hadronic collisions

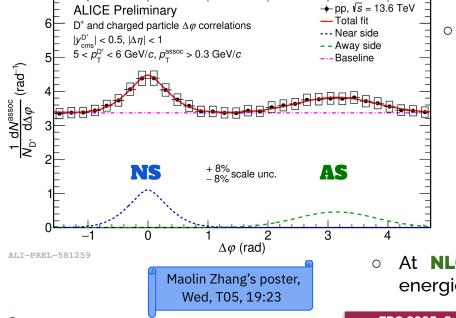
- Perturbative QCD test
- Hadronisation
- Reference for Pb-Pb


Heavy-flavour hadron production cross section calculated using a **factorisation approach**:

$$\frac{d\sigma^{\rm H_c}}{dp_{\rm T}}(p_{\rm T};\mu_{\rm F},\mu_{\rm R}) = \left[{\rm PDF}(x_1,\mu_{\rm F}) \otimes {\rm PDF}(x_2,\mu_{\rm F}) \otimes \underbrace{\frac{d\sigma^{\rm c}}{dp_{\rm T}^{\rm c}}(p_{\rm T};\mu_{\rm F},\mu_{\rm R})}_{{\rm Parton \, Distribution \, Functions}} \right] \otimes \underbrace{\frac{d\sigma^{\rm c}}{dp_{\rm T}^{\rm c}}(p_{\rm T};\mu_{\rm F},\mu_{\rm R})}_{{\rm Section \, (pQCD)}} \otimes \underbrace{\frac{D_{\rm c \to \rm H_c}(z=p_{\rm H_c}/p_{\rm c},\mu_{\rm F})}_{{\rm (hadronisation)}}} \right]$$

ALICE




- Azimuthal correlations of charmed hadrons with charged particles
 - Multidifferential investigation of fragmentation processes
 - Characterisation of jet shape and particle composition

- Azimuthal correlations of charmed hadrons with charged particles
 - Multidifferential investigation of fragmentation processes
 - Characterisation of jet shape and particle composition

- At LO approximation
 - Near Side (NS): fragmentation of the tagged charm quark
 - Away Side (AS): fragmentation of the recoil charm quark
- Baseline: parametrizes the underlying event activity, assumed to be isotropic
- At **NLO**: production mechanisms, relevant at the LHC energies, can alter this topology

• Charm tagged jets

- Provide access to the original parton kinematics
- Constrain the charm fragmentation function
- Probe the charm splitting function

Soft Drop algorithm:

• Remove soft, wide-angle radiation from jets

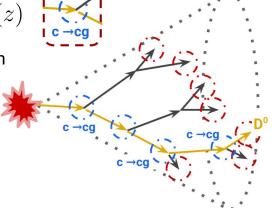
$$dP_{i \to jk} = \frac{d\theta}{\theta} dz P_{i \to jk}(z)$$

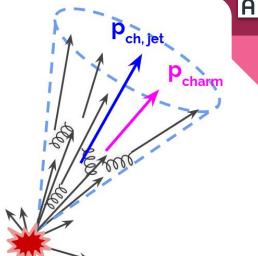
$$1 \to 2 \text{ QCD splitting function}$$

$$c \to cg$$

$$c \to cg$$

• Charm tagged jets


- Provide access to the original parton kinematics
- Constrain the charm fragmentation function
- Probe the charm splitting function


Soft Drop algorithm:

• Remove soft, wide-angle radiation from jets

$$\mathrm{d}P_{i\to jk} = \frac{\mathrm{d}\theta}{\theta} \,\mathrm{d}z \,P_{i\to jk}(z)$$

 $1 \rightarrow 2 \; \text{QCD}$ splitting function

Longitudinal momentum fraction

$$z_{||} = rac{ec{p}_{
m ch, \, jet} \cdot ec{p}_{
m HF}}{ec{p}_{
m ch, \, jet} \cdot ec{p}_{
m ch, \, jet}}$$

The ALICE detector in Run 3

Inner Tracking System (ITS) upgrade

- 7-layer pixel detector, based on MAPS
- First layer closer to IP w.r.t. Run 2 (22.4 mm)
- Improved vertexing performance (×2-5 better impact-parameter resolution)

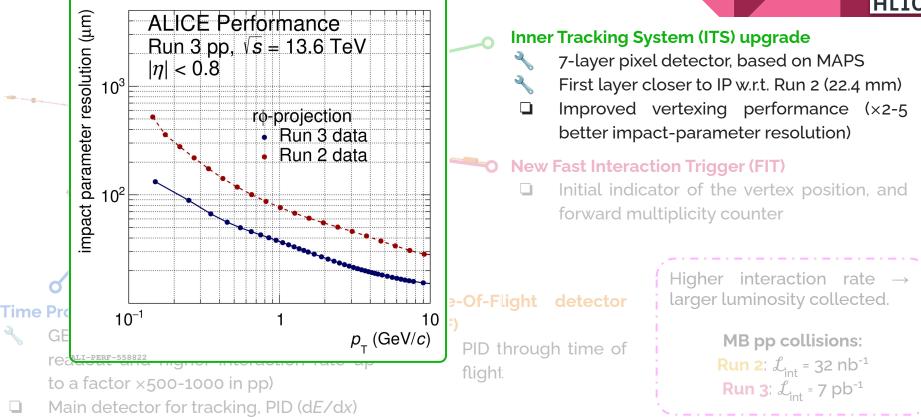
New Fast Interaction Trigger (FIT)

Initial indicator of the vertex position, and forward multiplicity counter

Time Projection Chamber (TPC) upgrade

- GEM-based readout pads (continuous readout and higher interaction rate up to a factor ×500-1000 in pp)
- □ Main detector for tracking, Particle Identification (PID) (dE/dx)

Time-Of-Flight detector (TOF)


PID through time of flight

Higher interaction rate \rightarrow larger luminosity collected.

```
MB pp collisions:
Run 2: \mathcal{L}_{int} = 32 nb<sup>-1</sup>
Run 3: \mathcal{L}_{int} = 7 \text{ pb}^{-1}
```

The ALICE detector in Run 3

The ALICE detector in Run 3

New F

Inner Tracking System (ITS) upgrade

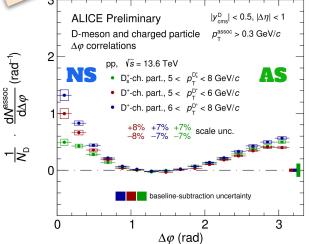
- 7-layer pixel detector, based on MAPS
- First layer closer to IP w.r.t. Run 2 (22.4 mm)
- Improved vertexing performance (×2-5 better impact-parameter resolution)

New Fast Interaction Trigger (FIT)

Initial indicator of the vertex position, and forward multiplicity counter

Time Projection Chamber (TPC) upgrade

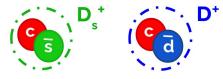
.......

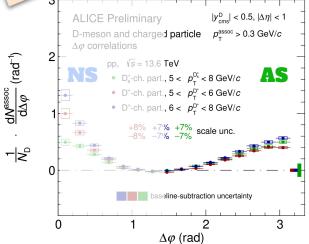

- GEM-based readout pads (continuous readout and higher interaction rate up to a factor ×500-1000 in pp)
- $\Box \quad \text{Main detector for tracking, PID } (dE/dx)$

Time-Of-Flight detector (TOF)

PID through time of flight

Higher interaction rate \rightarrow larger luminosity collected.


```
MB pp collisions:
Run 2: L<sub>int</sub> = 32 nb<sup>-1</sup>
Run 3: L<sub>int</sub> ≈ 7 pb<sup>-1</sup>
```

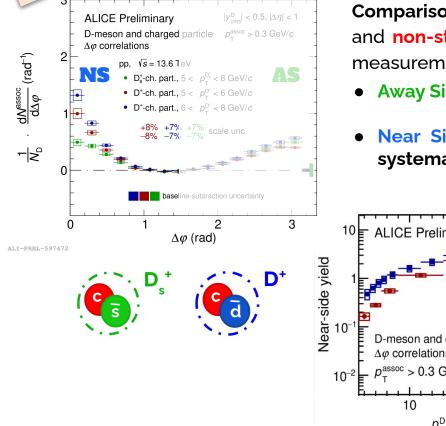


Comparison of the $\Delta \phi$ shape between the D_s^+ -ch. part. and non-strange D-ch. part. (pp (a) 13.6 TeV) correlation measurements:

NEW!

ALICE

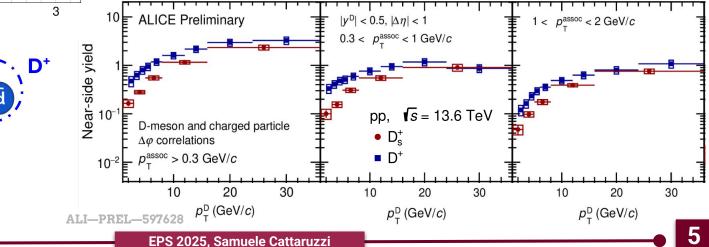
Comparison of the $\Delta \phi$ shape between the D_s^{+} -ch. part. and non-strange D-ch. part. (pp (a) 13.6 TeV) correlation measurements:

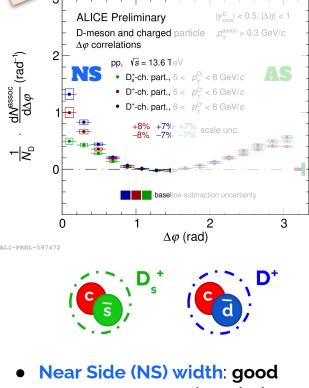
• Away Side (AS): good agreement over the whole p_{T} range


ALI-PREL-597472

NEW!

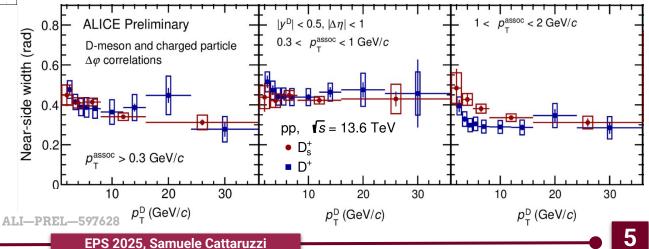
ALICE

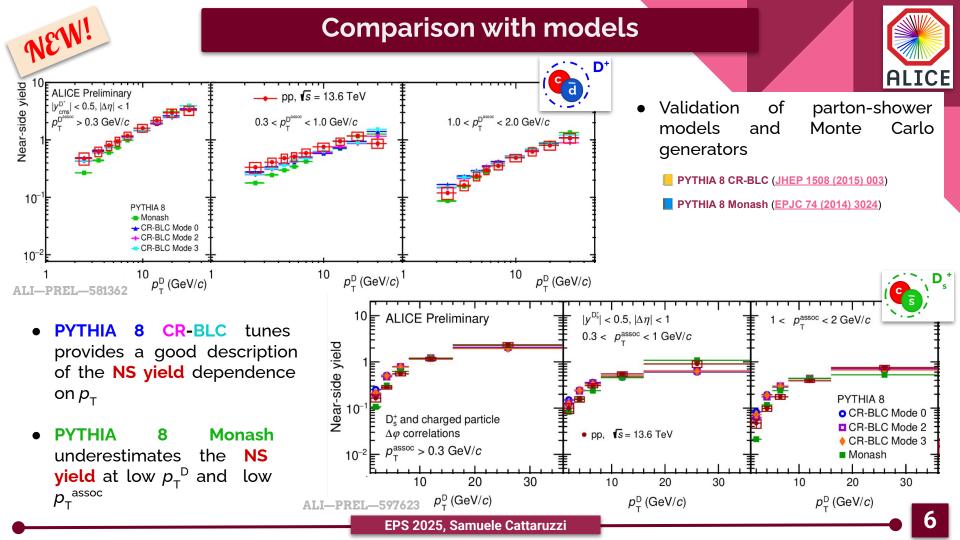



NEW!

Comparison of the $\Delta \phi$ shape between the D_s^{+} -ch. part. and non-strange D-ch. part. (pp (a) 13.6 TeV) correlation measurements:

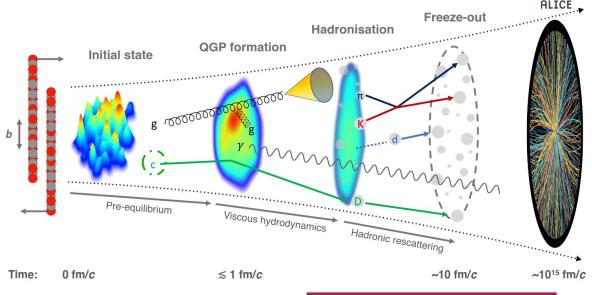
- Away Side (AS): good agreement over the whole p_{T} range
- Near Side (NS) yield: D_s⁺-meson associated particle yield systematically lower than that of non-strange D mesons





NEW!

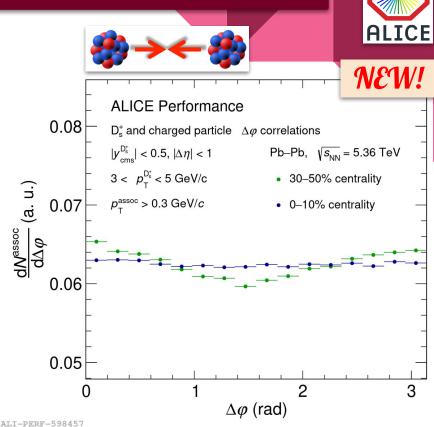
 Near Side (NS) width: good agreement over the whole p_T range **Comparison** of the Δφ shape between the D_s*-ch. part. and non-strange D-ch. part. (pp @ 13.6 TeV) correlation measurements:


- Away Side (AS): good agreement over the whole p_{T} range
- Near Side (NS) yield: D_s⁺-meson associated particle yield systematically lower than that of non-strange D mesons

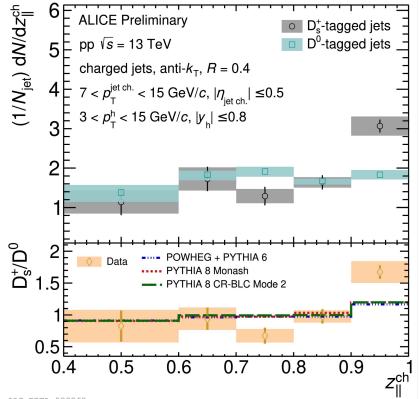
Outlook: D-charged particles correlation in Pb-Pb

- In heavy-ion collisions:
 - Quark-gluon plasma (QGP):
 - Colour-deconfined state of matter predicted by lattice QCD in ultrarelativistic heavy-ion collisions
 - > Formed at extremely high temperatures and/or energy densities, similar to the conditions expected in the first ~10 μ s after the Big Bang

- Heavy quarks are produced via hard scatterings before the QGP formation:
 - Experience the full evolution of the system

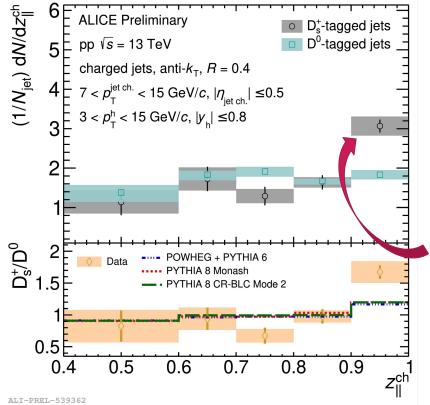


Outlook: D-charged particles correlation in Pb-Pb


 Characterisation of QGP properties via D-charged particle azimuthal correlations:

- Charm-quark energy loss through the interaction with the medium and impact on peak features
- Observation of jet quenching through parton energy loss on the away-side
- Modification of charm-quark hadronisation
- Additional challenge (w.r.t. pp) : proper removal of the flow contribution

D_s⁺ vs. D^o tagged jets


• Alternative way of probing charm fragmentation into D_s^{\dagger}

D_s⁺- tagged jets vs. **D**^o-tagged jets $Z_{||}^{ch}$ measurement

Longitudinal momentum fraction $z_{||} = \frac{\vec{p}_{\rm ch, jet} \cdot \vec{p}_{\rm HF}}{\vec{p}_{\rm ch, jet} \cdot \vec{p}_{\rm ch, jet}}$

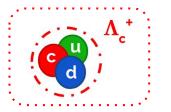
D[⁺] vs. D^o tagged jets

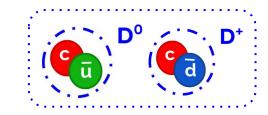
Alternative way of probing charm fragmentation into D',

D⁺ - tagged jets vs. **D**^o - tagged jets Z_{II}^{ch} measurement

 \mathcal{Z}

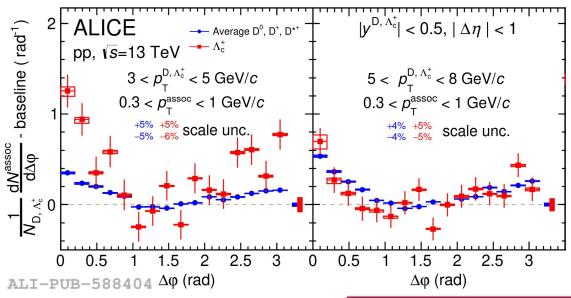
Longitudinal momentum fraction


$$|| = rac{ec{p_{ ext{ch, jet}}} \cdot ec{p_{ ext{HF}}}}{ec{p_{ ext{ch, jet}}} \cdot ec{p_{ ext{ch, jet}}}}$$

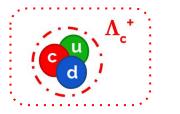

Hint of harder fragmentation of charm into D⁺ than D^o in the studied p_{τ} (ch-jet, D_{s}^{\dagger}) range

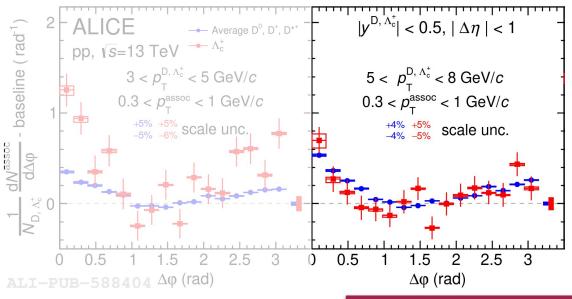
Would be consistent with the observation of a lower NS associated yield for D⁺ than non strange-D azimuthal correlations with ch. part.

Λ_{c}^{+} -charged particles correlation distribution

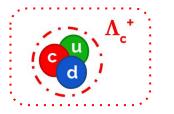


 Address charm fragmentation into baryons


arXiv:2411.10104


Λ_{c}^{+} -charged particles correlation distribution

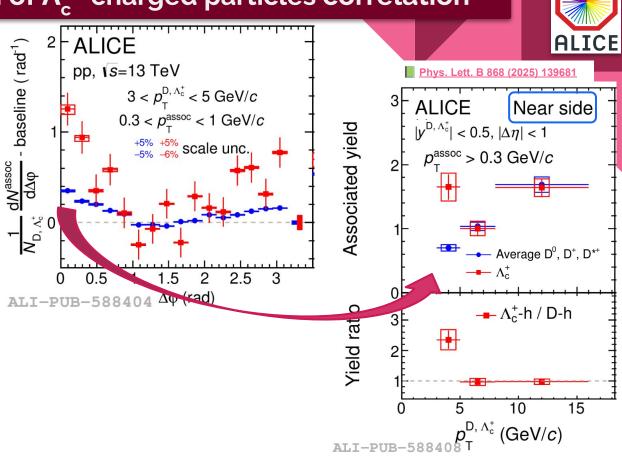
D^o


Phys. Lett. B 868 (2025) 139681

- Address charm fragmentation into baryons
- From the comparison of the Δφ shape:
 - Good agreement between the $\Delta \varphi$ distributions for $p_T(D, \Lambda_c^{+}) > 5$ GeV/c

Λ_{c}^{+} -charged particles correlation distribution

Phys. Lett. B 868 (2025) 139681



- Address charm fragmentation into baryons
- From the comparison of the Δφ shape:
 - Good agreement between the $\Delta \varphi$ distributions for $p_T(D, \Lambda_c^*) > 5$ GeV/c
 - Tendency towards an enhancement of both Λ_c⁺-ch. part. correlation peaks at low-p_T(D, Λ_c⁺) from D-ch. part. measurement

Characterisation of Λ_{1}^{+} -charged particles correlation

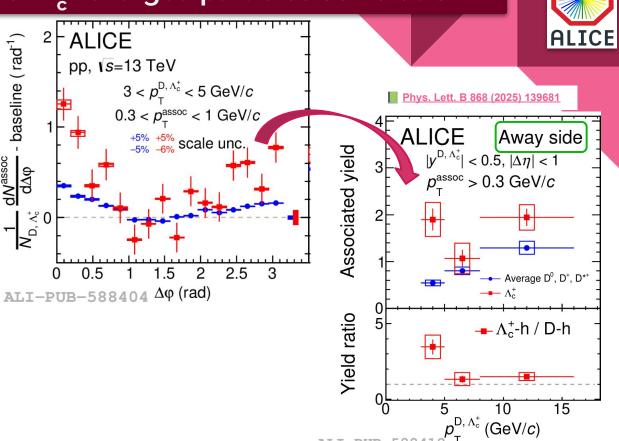
Possible motivations of the observed difference:

- Different energy of the a) quark charm as а consequence of a softer Λ^{+}_{1} fragmentation
- b) Decay of higher-mass charm states (RQM) Phys. Rev. D 84 (2011) 014025
- Hadronisation by **quark** c) recombination (to be tested with predictions from dedicated models)

Characterisation of Λ_{1}^{+} -charged particles correlation

baseline (rad⁻¹)

dΔφ



Possible motivations of the observed difference:

a)

Different energy of the quark charm as а consequence of a softer Λ^{+}_{1} fragmentation

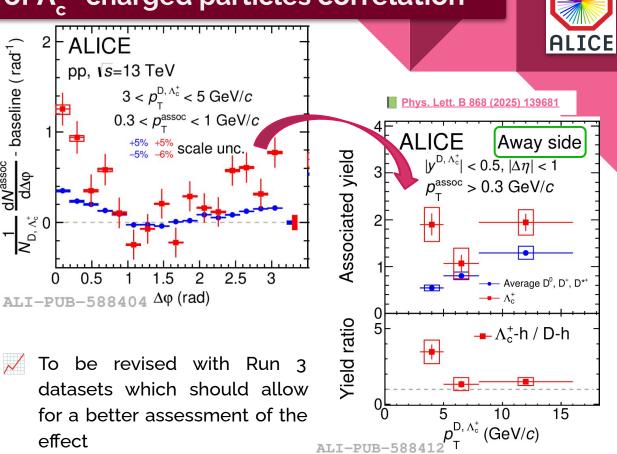
- b) Decay of higher-mass charm states (RQM) Phys. Rev. D 84 (2011) 014025
- Hadronisation by **quark** c) recombination (to be tested with predictions from dedicated models)

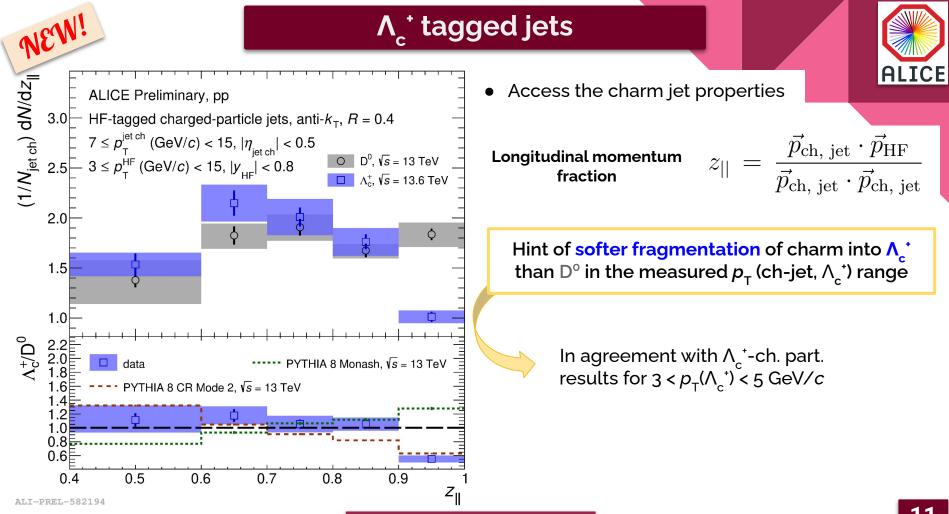
ALT-PUB-5884

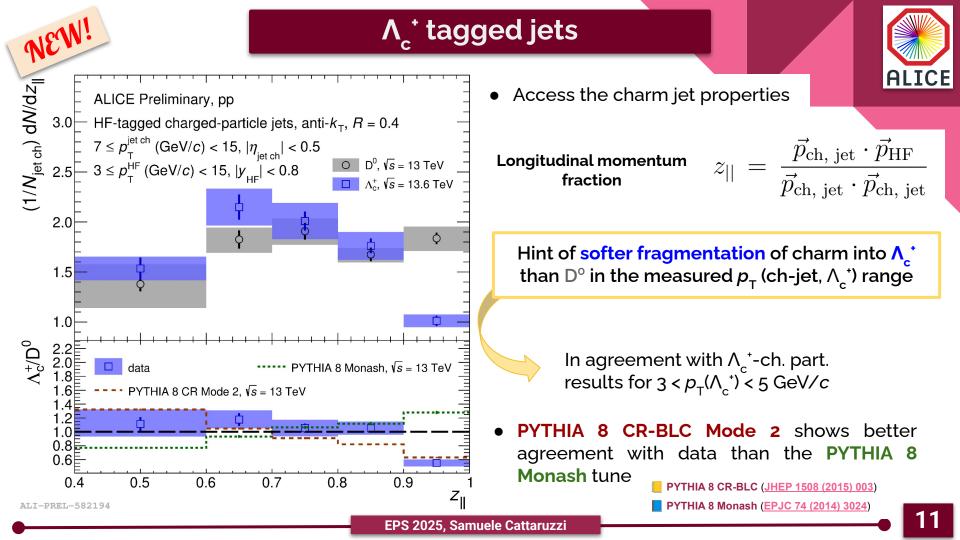
Characterisation of Λ_{1}^{+} -charged particles correlation

2

baseline (rad⁻¹)

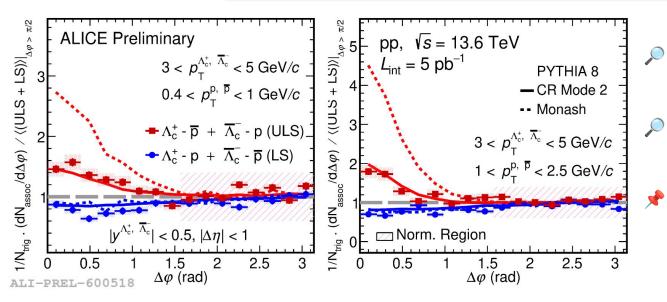

dΔφ dΔφ


0 [∧], D, ∧_°

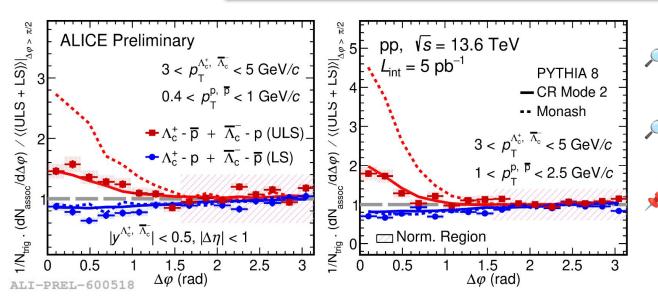


Possible motivations of the observed difference:

- Different energy of the a) quark charm as а consequence of a softer Λ^{+}_{1} fragmentation
- b) Decay of higher-mass charm states (RQM) Phys. Rev. D 84 (2011) 014025
- Hadronisation by **quark** c) recombination (to be tested with predictions from dedicated models)



Λ_{c}^{+} -p correlation

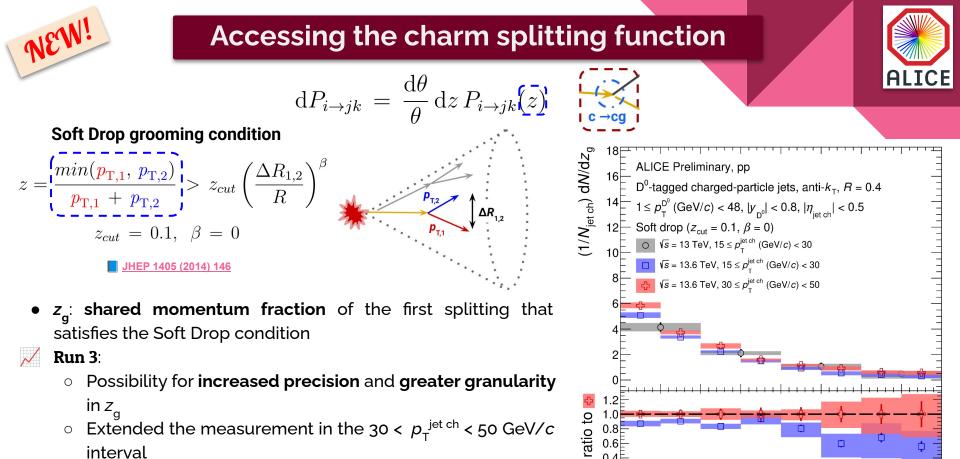


Further study to better investigate charm-quark hadronisation

- Open the possibility to explore local baryon number conservation
- Azimuthal correlation distributions normalised to the integral in the $\Delta \phi > \pi/2$ region

Λ_{c}^{+} -p correlation

to better


Further study to better investigate charm-quark hadronisation

Open the possibility to explore local baryon number conservation

Azimuthal correlation distributions normalised to the integral in the $\Delta \phi$ > π/2 region

• Clear correlation in the NS present in unlike-sign (ULS) Λ_c^+ -antiproton pairs, absent for LS pair

- \rightarrow Possibly due to local baryon number conservation?
- Effect significantly more pronounced in the PYTHIA 8 Monash tune compared to CR Mode2
- PYTHIA 8 with CR Mode 2 beyond leading colour approximation well describes the data

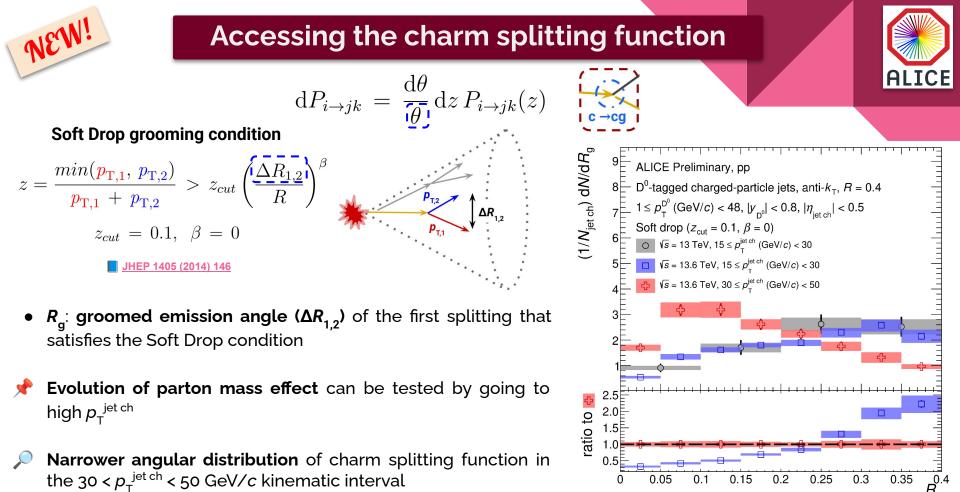
More jets pass Soft Drop at higher $p_{\tau}^{\text{ jet ch}} \rightarrow \text{ reduction of the}$ dead cone effect AT.T-PREL-582242

0.15

0.1

0.2

0.25


0.3

0.35

0.5

0.45

0.4

EPS 2025, Samuele Cattaruzzi

ALI-PREL-58230

Summary and outlook

D-charged particles azimuthal correlations and tagged jets:

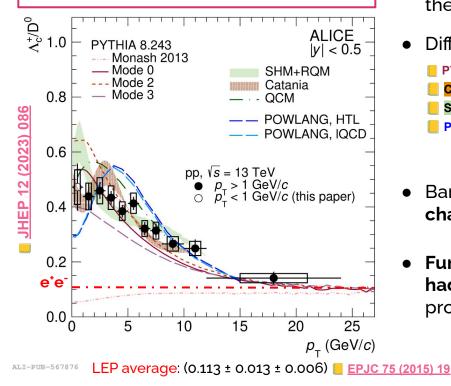
- Indication of a harder hadronization for charm quarks into D⁺ mesons
- Good agreement with model predictions (PYTHIA 8 CR-BLC)

Λ_{c}^{+} -charged particles azimuthal correlations and tagged jets:

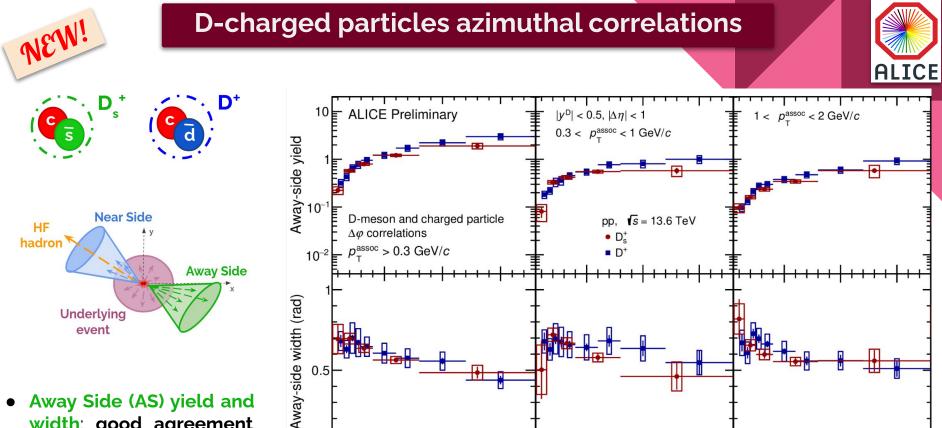
- Indication of softer charm quark fragmentation into Λ_c^{+} compared to D mesons
- Correlation studies with identified protons open the possibility to explore local baryon number conservation

Accessing charm splitting function:

- Investigation of the role of parton mass effects in parton shower dynamics
- Enhanced granularity and extended measurement reach to higher $p_{T}^{jet ch}$


Further results expected shortly on new Run 3 data samples

BACKUPSLIDES


Charm baryon-to-meson enhancement in pp collisions

 p_{T} -dependent enhancement of $\Lambda_{c}^{+}/D^{\circ}$ ratio in pp w.r.t. e⁺e⁻

- PYTHIA 8 Monash (<u>EPJC (2014) 3024</u>), with FF tuned on e⁺e⁻, significantly underestimates the data
- Different hadronisation mechanisms proposed
 - PYTHIA 8 CR-BLC (<u>JHEP 1508 (2015) 003</u>)
 CATANIA (arXiv:2012.12001) and QCM (EPJC (2018) 78:344)
 SHM + RQM (PLB 795 (2019) 117-121)
 POWLANG (arXiv:2306.02152)
- Baryon-to-meson measurement focuses solely on the charm hadron production
- Further studies can shed light on charm-quark hadronisation by considering also the other particles produced in association to the charm hadron

Away Side (AS) yield and • width: good agreement over the whole p_{τ} range

30

10

30

10

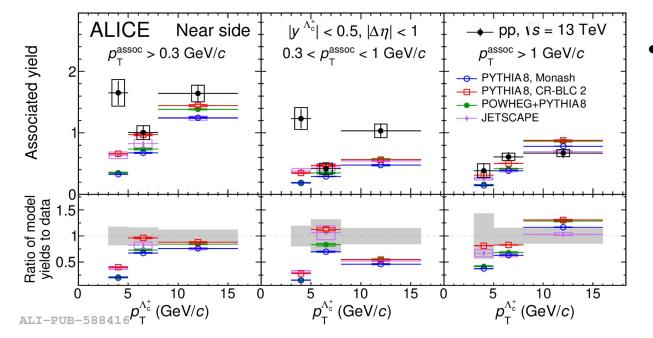
20

 p_{τ}^{D} (GeV/c)

20

 p_{τ}^{D} (GeV/c)

20


10

ALI-PREL-597(GeY/c)

30

Λ_c^{+} -charged particles correlation comparison with models

- Yields:
 - Tensions with PYTHIA8 predictions
 - Low-p_T(Λ_c⁺) not correctly reproduced

PYTHIA 8 CR-BLC modes, despite predicting the $\Lambda_c^*/D^\circ p_T$ -dependence, do not describe the differences in the charm-jet

arXiv:2411.10104