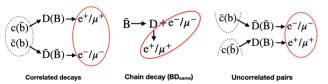

Measurement of associated production of electrons and muons from heavy-flavour hadron decays in pp collisions with ALICE

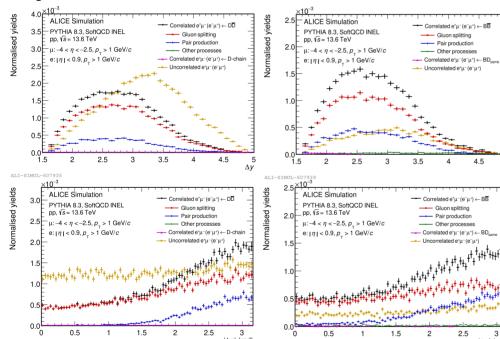
EPS-HEP 2025 · Marseille · 7-12 July

Physics motivation

- Heavy quarks (c, b) are produced almost exclusively in initial hard partonic scatterings
- Associated production of electron-muon pairs from heavy-flavour hadron decays in proton-proton (pp) collisions
 - ➡ Unaffected by contaminations from resonance decays, thermal radiation, or Drell-Yan processes
 - ✦ Powerful tool to probe correlated charm/beauty productions
 - ➡ Provide new insight on the production mechanisms and the role of Multiple Parton Interactions (MPI) in pp collisions
 - ◆ Investigate relative contributions of single parton scattering (SPS) and double parton scattering (DPS)
 - \blacklozenge Rapidity (Δy) and azimuth ($\Delta \varphi$) difference: discriminate SPS and DPS [1]

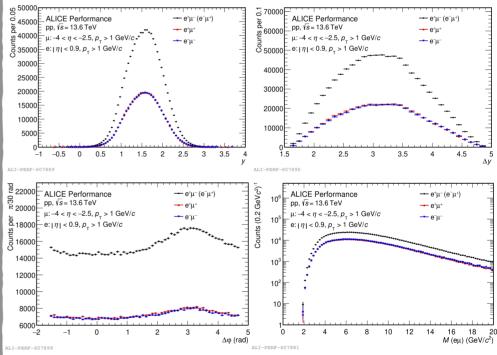

Continuous readout of central-barrel detectors at higher interaction rate in Run 3: possible to measure heavy-flavour electron-muon coincidences

Heavy-flavour electron-muon pairs with PYTHIA


• Simulated e- μ pairs categorised into correlated decays, chain decays (D-chain and BD_{same}), and uncorrelated pairs

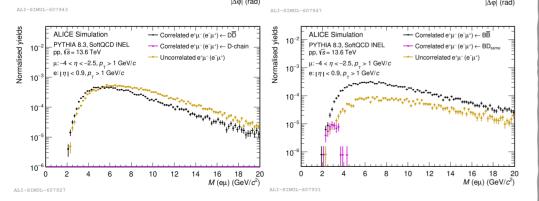
➡ SoftQCD INEL

- MPI enabled
- ➡ Force decay of D/Bhadrons into electrons and muons
- Correlated pairs further tagged according to their heavy-quark production mechanism


Data analysis

- Data sample: pp collisions at $\sqrt{s} = 13.6$ TeV, $L_{int} = 5.7$ pb⁻¹
- **Selection conditions:**
 - \Rightarrow Events: $|z_{vtx}| < 10$ cm \rightarrow Muons:

 - ♦ $p_{\rm T}$ > 1 GeV/c, -4.0 < η < -2.5
- ♦ $p_{\rm T} > 1.0$ GeV, |η| < 0.9


 \rightarrow Electrons:

- ♦ PID: -1 < TPC $n\sigma_{e}$ < 3,
 - TPC $n\sigma_{\text{hadron}} > 3.5$
- Typical distributions of $e-\mu$ pairs (background not subtracted)

• Measurements in an interesting pair y region, between central barrel and muon arm of ALICE

- ✦ matching MCH-MID

- Significant contributions of uncorrelated e-μ pairs from D-hadron decays compared to B-hadron decays
- Correlated e-µ pairs from D(B)-hadron decays
 - Dominated by gluon splitting process
 - \Rightarrow Maximum at $|\Delta \varphi| = 180^{\circ}$
- Negligible e- μ pairs contributions from D-chain and BD_{same}
 - Suppressed by applying η and $p_{\rm T}$ selections

- ALICE provides **unique** $|\Delta y|$ **reach** at the LHC, up to $|\Delta y| = 5$ units
- Pair $\Delta \phi$ maximum at 180° as observed in PYTHIA
- Pair $M_{e\mu}$ spreads over several GeV/ c^2 without structure
 - ➡ Challenging for background estimation
- Complementary to existing Run 2 dilepton measurements [3], and ongoing J/ψ -D⁰ and D⁰-D⁰ associated production measurements
- Similar distributions in PYTHIA simulation and data observed
- Promising new measurement with ALICE in Run 3
- **Ongoing:** background subtraction applying event-mixing and likesign techniques

[1] LHCb, JHEP 06 (2017) 047 [2] T. Sjöstrand et al., Comput. Phys. Commun. 191 (2015) 159-177 [3] ALICE, Phys. Lett. B, 788 (2019) 505

This work was supported by the China Scholarship Council