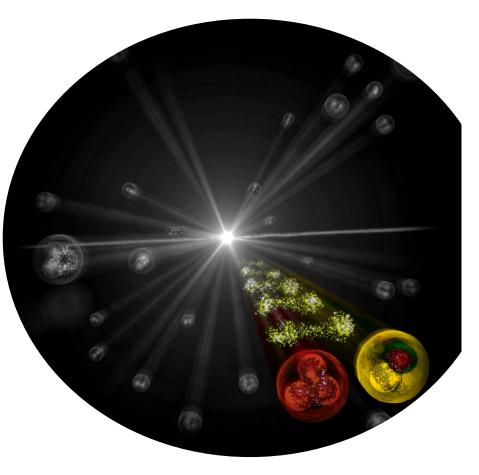


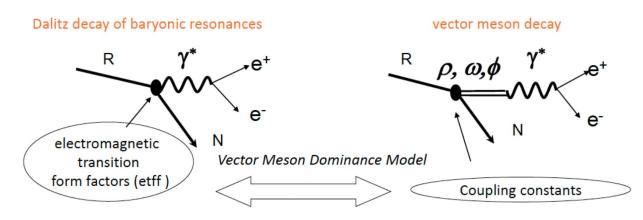
First measurement and investigation of the $\rho^0 p$ final-state interaction with ALICE

M. Korwieser on behalf of ALICE Collaboration Technical University of Munich, E62

10th of July 2025 EPS-HEP 2025, Marseille

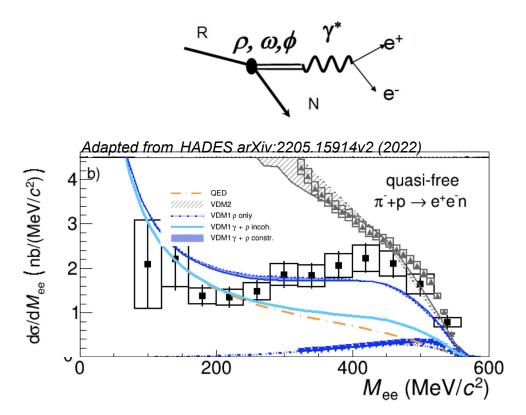


Vector meson nucleon interaction



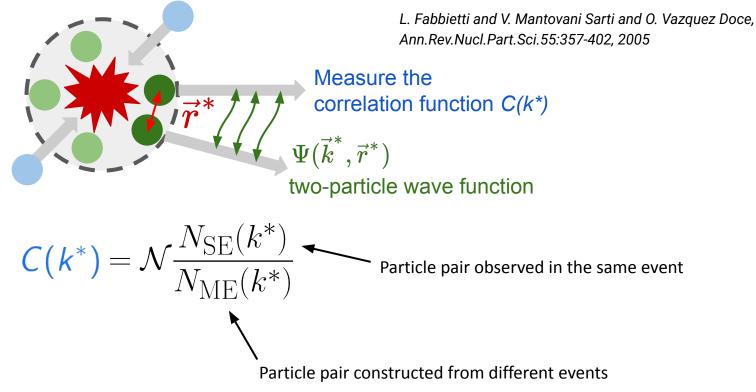
- Usually probed by Vector Meson Dominance (VMD¹) Models 1: J. J. Sakurai, Phys. Rev. Lett. 22, 981 (1969)
 - Hadronic contribution to the photon propagator
 - Off-shell vector mesons
- Important to understand...
 - ... in-medium dilepton production
 - ... dynamically generated states N* and Δ* (pole positions) from unitarised chiral perturbation theory (UChPT²)
 2: N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B 362, 23 (1995)

Vector meson nucleon interaction

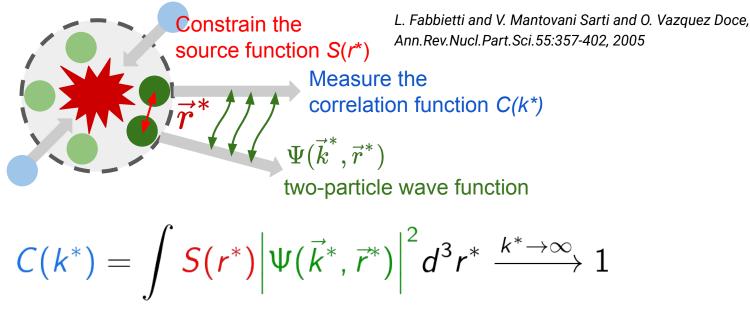


- Test of VMD at HADES
 - Low-energy beams (π)
 - M_{ee} excess compared to QED reference
- Excess modeled
 - With low-lying intermediate resonances (R) (N(1440), N(1520), N(1535) in a Rγ*N vertex)
- But how can one access the interaction between the ρ⁰ and nucleon directly?

Femtoscopy in a nutshell

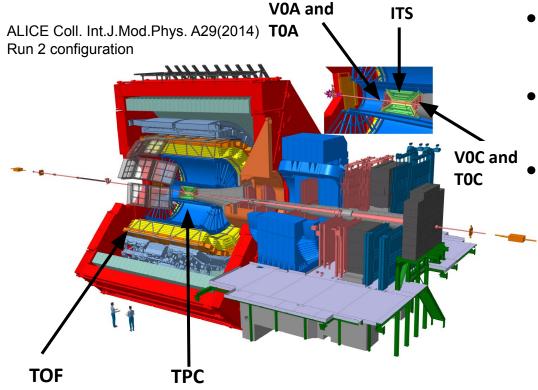


Femtoscopy in a nutshell



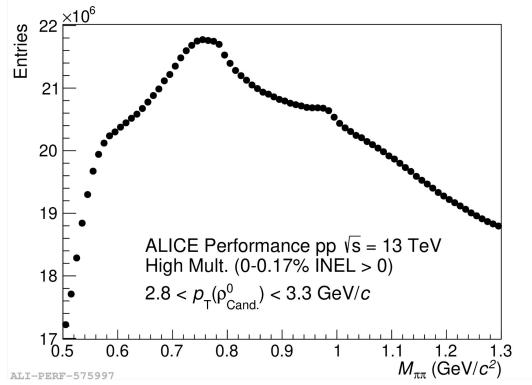
- Measure C(k*), use constrained S(r*), study interaction ALICE, PLB 811:135849 (2020); ALICE, EPJC 85 (2025) 2, 198; ALICE, arXiv:2502.20200 (2025)
- For evaluation of integral and $S(r^*)$ use CATS framework

D. L. Mihaylov et al. Eur.Phys.J.C 78 (2018) 5, 394



- High multiplicity (HM) pp collisions @ 13 TeV
 - 1 Billion events in Run 2
- Direct detection of charged particles
 (π, K, p) by TPC and TOF
- Particle identification
 - Mean energy loss in TPC
 - Momentum reconstruction by TOF
 - Purity of about 99% for π , K, p due to excellent PID capabilities

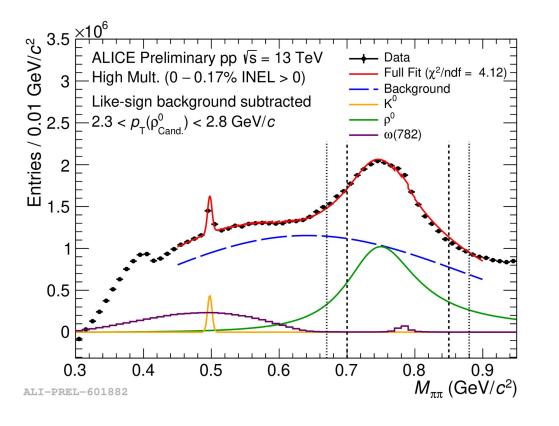
Reconstruction of ρ^0



• Access to ρ^0 ($c\tau = 1.2 \text{ fm/}c$) • Pair all π in an event $\rho^0 \rightarrow \pi^+ \pi^-$ (B.R. \cong 100%)

- Purity of the ρ⁰ around 3.26%
 Obtained by fit
- Two types of background
 - Combinatorial due to $(\pi\pi)_{\text{Comb.}}$
 - Mini-jet correlations

Model $M_{\pi\pi}$ to access purity of ρ^0



Assess purity of ρ^0

- Pair all π in an event Ο
- Record $M_{\pi\pi}$ vs p_{π} Ο
- Fit projections Ο

Method follows established procedures^{1,2}

- Use LSB subtraction \cap
- Model states with rBW/MC temp. Ο
- Gaussian for K⁰ Ο
- **Purity 3.26%** Ο

For p_{τ} > 1.8 GeV/*c* ρ^0 -peak is visible

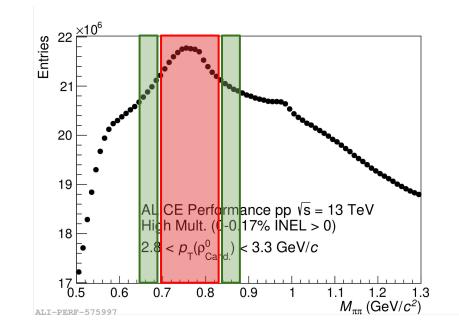
- Ο
- translates to high $m_{\rm T}$ pairs 1.64 < $m_{\rm T}$ < 3.77 (GeV/ c^2) 0

1: STAR, PRL. 92 (2004) 092301 2: ALICE, PRC 99 (2019) 064901

 $C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot (\boldsymbol{\omega}_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \boldsymbol{\omega}_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*)).$

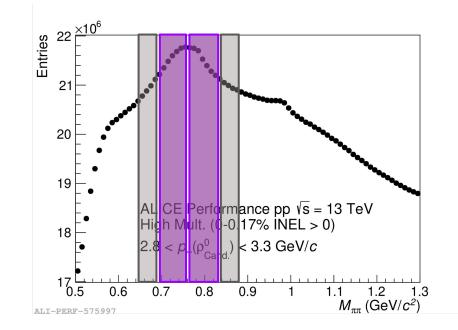
$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot \left[(\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*) \right].$$

- Account for correlation of $(\pi\pi)_{Comb.}$ underneath ρ^0 signal
- Employ sideband (SB) analysis
 - $\circ \quad \mbox{Compute correlation function} \\ selecting \mbox{ρ^0}_{Cand.} \mbox{ from left and right} \\ sideband \ region \end{tabular}$



$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot \left[(\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*) \right].$$

- Account for correlation of $(\pi\pi)_{\text{Comb.}}$ underneath ρ^0 signal
- Employ sideband (SB) analysis
 - $\circ \quad \mbox{Compute correlation function} \\ selecting \mbox{ρ^0}_{Cand.} \mbox{ from left and right} \\ sideband region \end{tabular}$
 - Calculate weights by integration
 - Obtain SB correlation by a weighted average



$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot (\boldsymbol{\omega}_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \boldsymbol{\omega}_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*)).$$

$$C_{\rho^{0}-p}(k^{*}) = \frac{1}{C_{\text{minijet}}} \left\{ \frac{1}{\lambda_{\rho^{0}-p}} \left[C_{\text{measured}}(k^{*}) - (1-\lambda_{\rho^{0}-p})C_{\text{SB}}(k^{*}) \right] \right\}.$$

$$C_{\text{measured}}(k^{*}) = C_{\text{minijet}}(k^{*}) \left[\lambda_{\rho^{0}-p} \cdot C_{\rho^{0}-p}(k^{*}) \right] + (1 - \lambda_{\rho^{0}-p}) \cdot \left(\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^{*}) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^{*}) \right).$$

$$C_{\rho^{0}-p}(k^{*}) = \underbrace{\frac{1}{C_{\text{minijet}}}}_{C_{\text{minijet}}} \left\{ \frac{1}{\lambda_{\rho^{0}-p}} \left[C_{\text{measured}}(k^{*}) - (1 - \lambda_{\rho^{0}-p}) C_{\text{SB}}(k^{*}) \right] \right\}.$$

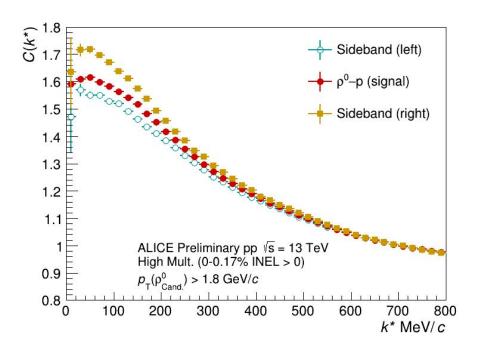
- Account for correlation of ...
 - fake ρ^0 -p by SB subtraction
 - **SB** left and right weighted (ω) with integral under ρ^0 peak
 - **Take genuine** ρ^0 -p in SB into account
 - **Minijets** in ρ^0 -p by dividing by SB (assume SB is dominated by Minijet)

$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot (\boldsymbol{\omega}_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \boldsymbol{\omega}_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*)).$$

$$C_{\rho^{0}-p}(k^{*}) = \frac{1}{C_{\text{minijet}}} \left\{ \frac{1}{\lambda_{\rho^{0}-p}} \left[C_{\text{measured}}(k^{*}) - (1-\lambda_{\rho^{0}-p})C_{\text{SB}}(k^{*}) \right] \right\}.$$

- Account for correlation of ...
 - \circ fake ρ^0 -p by SB subtraction
 - SB left and right weighted (ω) with integral under ρ^0 peak
 - Take genuine ρ^0 -p in SB into account
 - Minijets in ρ^0 -p by dividing by SB (assume SB is dominated by Minijet)
- Properly scaled by the λ parameter
 - Depends on the single-particle properties (purity and fractions)
 - \circ dominated by the purity of ρ^0

Correlation function of signal and sidebands

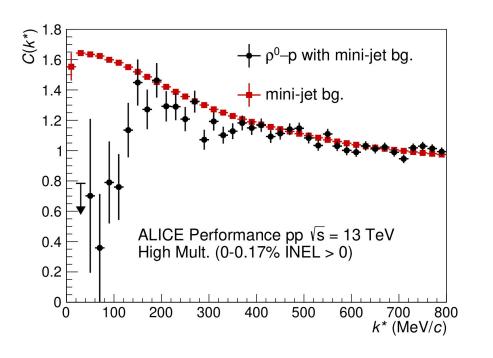


- Normalisation 600 800 MeV/c
- Correlation in signal region
 - \circ ρ^0 -p final-state interaction
 - Minijet contribution
 - correlation from SB
- Corrections
 - Take ρ^0 -p in SB into account
 - \circ Subtract λ scaled SB

$$C_{\rho^0-p}(k^*) = \frac{1}{C_{\text{minijet}}} \left\{ \frac{1}{\lambda_{\rho^0-p}} \left[C_{\text{measured}}(k^*) - (1-\lambda_{\rho^0-p}) C_{\text{SB}}(k^*) \right] \right\}.$$

ALICE

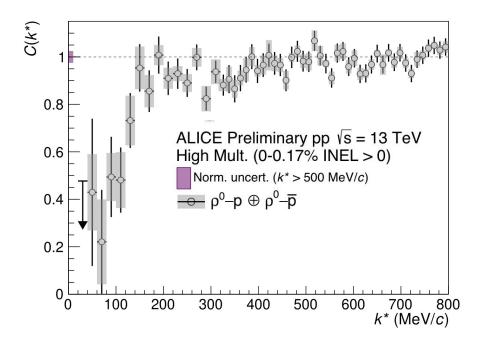
ρ^{0} -p correlation after SB subtraction



- Normalization region in 600–800 MeV/c
- λ (= 2.7%) dominated by ρ⁰ purity
- Minijet contribution still present
- Corrections
 - Assumption: Minijet equals SB
 - Divide by SB as proxy for Minijet

$$C_{\rho^0-p}(k^*) = \frac{1}{C_{\text{minijet}}} \left\{ \frac{1}{\lambda_{\rho^0-p}} \left[C_{\text{measured}}(k^*) - (1-\lambda_{\rho^0-p})C_{\text{SB}}(k^*) \right] \right\}.$$

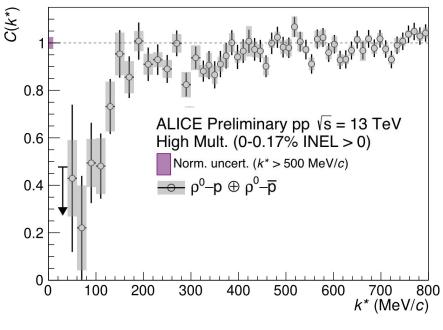
Π First direct observation of the ρ⁰N coupling



- Systematics obtained by varying selections
- no values w.r.t to unity (no interaction) for...
 - < 100 MeV/*c*: 3.6
 - < 120 MeV/c: 4.3
 - < 200 MeV/*c*: 4.0
- Coupled channels:
 ρ⁺n, ωp, φp, K*Λ, K*Σ
- Other N* and Δ * states (4* in PDG)
 - N*(1700) below ρN threshold (1713 MeV)

$$\underline{C_{\rho^0-p}(k^*)} = \frac{1}{C_{\text{minijet}}} \left\{ \frac{1}{\lambda_{\rho^0-p}} \left[C_{\text{measured}}(k^*) - (1-\lambda_{\rho^0-p})C_{\text{SB}}(k^*) \right] \right\}.$$

Π First direct observation of the ρ⁰N coupling



1: A. Feijoo, MK, L. Fabbietti PRD 111 (2025) 1, 014009 2: ALICE PRL 127 (2021)

- Prediction obtained within UChPT¹ for S=0
 - Coupled channels:
 ρ⁺n, ωp, φp, K*Λ, K*Σ
 - Includes dynamical states N*(1700) and N*(2000)

• Use ϕ -p CF result² for simultaneous fit

TIM Unitarised chiral perturbation theory for ρ^0 -p

Interaction
kernel V
$$T_{ij} = (1 - V_{il}G_l)^{-1}V_{lj}$$
Scattering
Matrix T i to j

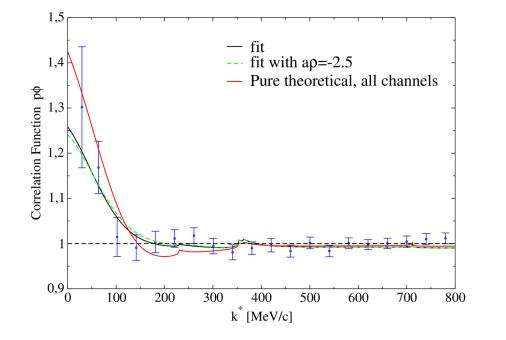
$$\psi_{ji}(k^*, r^*) = \delta_{ij} j_0(k^* r^*) + \int_{q \le q_{\text{cut}}} d^3 q j_0(qr^*) G_j(\sqrt{s}, q) T_{ji}(\sqrt{s}, k^*, q)$$

1: A. Feijoo, MK, L. Fabbietti PRD 111 (2025) 1, 014009

• Core Idea

- Extract LO interaction form
 Chiral L + Hidden Gauge Symmetry
- Solve Bethe–Salpeter Equation in coupled channels ansatz¹
- Outcome
 - Resonances as poles in *T*-Matrix
 - Extract scattering parameters from wavefunction

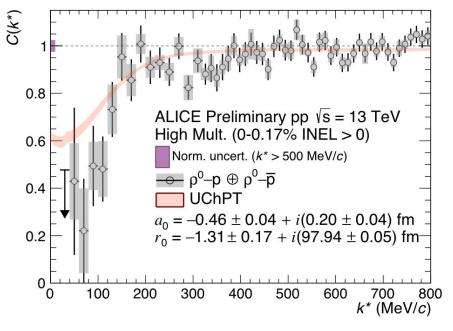
Unitarised chiral perturbation theory for ρ⁰–ρ



1: A. Feijoo, MK, L. Fabbietti PRD 111 (2025) 1, 014009 2: ALICE PRL 127 (2021) • Core Idea

- Extract LO interaction form
 Chiral L + Hidden Gauge Symmetry
- Solve Bethe–Salpeter Equation in coupled channels ansatz¹
- Outcome
 - Resonances as poles in *T*-Matrix
 - Extract scattering parameters from wavefunction
- Advantages over VMD
 - *Naturally* accounts for int. dynamics coupled channels + resonances
 - Use ϕ -p CF result²
 - Based on gauge principle

Prediction from UChPT for \rho^0–p

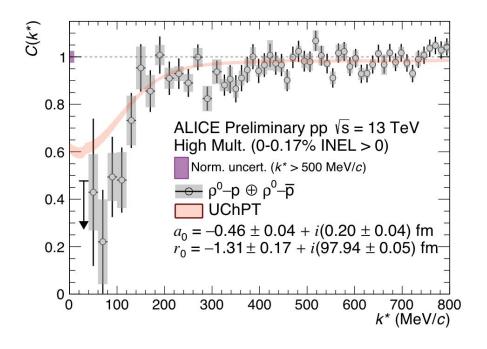


1: A. Feijoo, MK, L. Fabbietti PRD 111 (2025) 1, 014009 2: ALICE PRL 127 (2021) 3: Y Koike and A. Hayashigaki, PTP. 98412 (1997) 631–652

- Prediction obtained within UChPT¹ for S=0
 - Coupled channels:
 ρ⁺n, ωp, φp, K*Λ, K*Σ
 - Includes dynamical states N*(1700) and N*(2000)

- Use ϕ -p CF result² for simultaneous fit
- Results
 - Data provide unique constraint on pole position of N*(1700)
 - Extract scattering parameters consistent with QCD sum rule calc.³
- Maximilian Korwieser | EPS-HEP | max.korwieser@tum.de

Take away

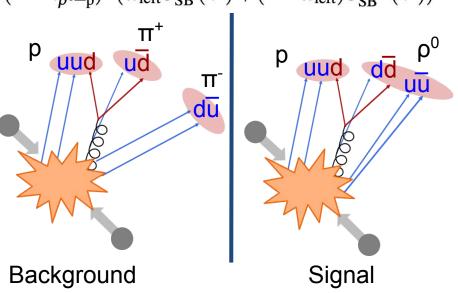


- Access to the interaction of the shortest-lived QCD state
- First direct measurement of the ρ⁰p interaction with full phase information
- Implications
 - Benchmark VMD implementations
 - Basis for Chiral symmetry restoration studies
 - Collider based insight into QCD spectrum
- Paper in preparation!

Back-up

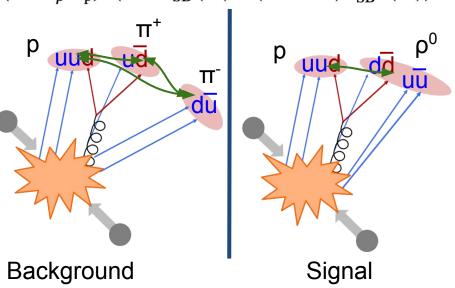
 $C_{\text{measured}}(k^*) = \left[C_{\text{minijet}}(k^*)\right] \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*)\right] + (1 - \lambda_{\rho^0 - p}) \cdot (\omega_{\text{left}}C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}})C_{\text{SB}}^{\text{right}}(k^*)).$

- Mini-jets
 - Partons share a common production (i.e. via gluon splitting)
 - Introduces momentum correlations
 - Contained in signal and SB regions
 - Use sideband correlation functions



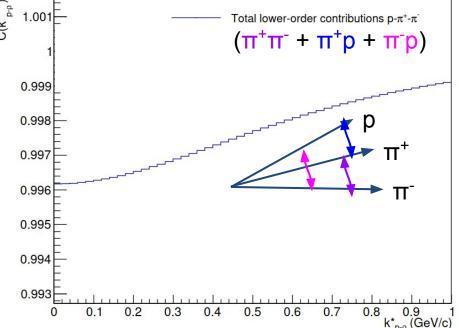
 $C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot (\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*)).$

- Mini-jets
 - Partons share a common production (i.e. via gluon splitting)
 - Introduces momentum correlations
 - Contained in signal and SB regions
 - Use sideband correlation functions



 $C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot (\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*)).$

- Mini-jets
 - Partons share a common production (i.e. via gluon splitting)
 - Introduces momentum correlations
 - Contained in signal and SB regions
 - Use sideband correlation functions
- Residual 2-Body correlations
 - \circ Analytical projection in ρ^0 -p system
 - Projected¹ 2-Body correlations flat in ρ^0 -p kinematic system
 - → SB dominated by mini-jets



1: R. Del Grande et. al. EPJC 82 (2022)

$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + \left(1 - \lambda_{\rho^0 - p} \right) \cdot \left(\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*) \right).$$

- Weight each contribution with corresponding λ
 - Depends on the single-particle properties (purity and fractions)
 - Dominated by ρ^0 purity amounts to 5%
- Due to small purity extract the genuine ρ⁰-p correlation from data

$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + \left((1 - \lambda_{\rho^0 - p}) \cdot (\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*)) \right).$$

- Weight each contribution with corresponding λ
 - Depends on the single-particle properties (purity and fractions)
 - Dominated by ρ^0 purity amounts to 5%
- Due to small purity extract the genuine ρ⁰-p correlation from data

$$C_{\rho^0-p}(k^*) = \frac{1}{C_{\text{minijet}}} \left\{ \frac{1}{\lambda_{\rho^0-p}} \left[C_{\text{measured}}(k^*) - (1-\lambda_{\rho^0-p})C_{\text{SB}}(k^*) \right] \right\}.$$

UChPT - Plots

Theory - Plots

Unitarised chiral perturbation theory (UChPT) 1/2

Formalism: Interaction

Hidden gauge formalism

$$V_{1}$$

$$V_{2}$$

$$V_{\mu} = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}_{\mu}$$

$$V_{\mu} = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho^{0} + \frac{1}{\sqrt{2}}\omega & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}_{\mu}$$

$$V_{\mu} = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{2}}\Lambda & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & n \\ \Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix}$$

 B_1

S=0, Q=+1 sector: 7 channels

1 0

C _{ij}	$ ho^0 p$	$\rho^+ n$	ωp	ϕp	$K^{*+}\Lambda$	$K^{*o}\Sigma^+$	$K^{*+}\Sigma^0$
$\rho^0 p$	0	$\sqrt{2}$	0	0	$-\sqrt{3}/2$	$1/\sqrt{2}$	-1/2
$\rho^+ n$		(1)	0	0	$-\sqrt{3}/\sqrt{2}$	0	$1/\sqrt{2}$
ωρ		~	0	0	$-\sqrt{3}/2$	$-1/\sqrt{2}$	-1/2
ϕp				0	$\sqrt{3}/\sqrt{2}$	1	$1/\sqrt{2}$
$K^{*+}\Lambda$				\sim	0	0	0
$K^{*o}\Sigma^+$							$\sqrt{2}$
$K^{*+}\Sigma^0$						\smile	0

Relativistic Interaction kernel projected onto s-wave

 B_2

$$V_{ij} = -\frac{1}{4f^2} \underbrace{C_{ij}}_{2M_i} \sqrt{\frac{M_i + E_i}{2M_i}} \sqrt{\frac{M_j + E_j}{2M_j}} (2\sqrt{s} - M_i - M_j)$$

Unitarised chiral perturbation theory (UChPT) 1/2

Formalism: T-matrix

The Bethe-Salpether equation is solved to calculate the scattering matrix

$$T_{ij} = (1 - V_{il}G_l)^{-1}V_{lj}$$

The vector meson – baryon loop after dimensional regularization:

$$G_{l} = \frac{2M_{l}}{(4\pi)^{2}} \left\{ a_{l}(\mu) + \ln \frac{M_{l}^{2}}{\mu^{2}} + \frac{m_{l}^{2} - M_{l}^{2} + s}{2s} \ln \frac{m_{l}^{2}}{M_{l}^{2}} + \frac{q_{\rm cm}}{\sqrt{s}} \ln \left[\frac{(s + 2\sqrt{s}q_{\rm cm})^{2} - (M_{l}^{2} - m_{l}^{2})^{2}}{(s - 2\sqrt{s}q_{\rm cm})^{2} - (M_{l}^{2} - m_{l}^{2})^{2}} \right] \right\}$$
subtraction constants for the dimensional regularization scale in all the "I" channels.
subtraction scale in all the "I" channels.
$$a_{\mu} = a_{\mu}N$$

In principle, all vector mesons are assumed to be stable particles but...

The Bethe-Salpether equation is solved to calculate the scattering matrix $T_{\rm eff} = (1 - V_{\rm eff}G_{\rm eff})^{-1}V_{\rm eff}$

$$I_{ij} = (I - v_{il}G_l) - v_{lj}$$
The vec

$$\psi_{ji}(k^*, r^*) = \delta_{ij} j_0(k^* r^*)$$
rization:

$$+ \int_{q \leq q_{cut}} d^3 q j_0(qr^*) G_j(\sqrt{s}, q) T_{ji}(\sqrt{s}, k^*, q) \frac{\sqrt{s}q_{cm}^2 - (M_l^2 - m_l^2)^2}{\lfloor (s - 2\sqrt{s}q_{cm})^2 - (M_l^2 - m_l^2)^2 \rfloor}$$
Subtraction constants for the dimensional regularization scale in all the "I" channels.
Subtraction constants for the dimensional regularization scale in all the "I" channels.

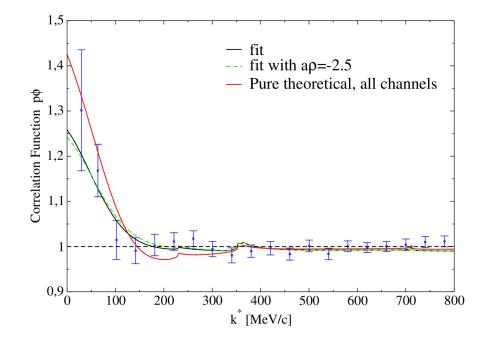
$$= a_{K^*+\Sigma^0} = a_{K^*0\Sigma^+} = a_{K^*\Sigma}$$

In principle, all vector mesons are assumed to be stable particles but...

Unitarised chiral perturbation theory (UChPT) 2/2

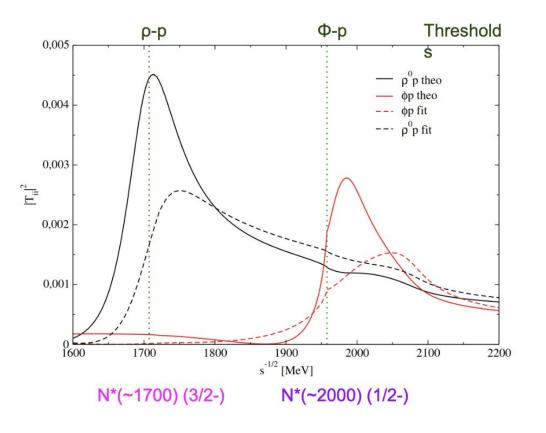
Formalism: T-matrix

Comparison with model (courtesy of A. Feijoo)



- Use ϕ -p result to fit parameters of UChPT
 - employs coupled channel approach
 - Weights obtained using
 - Thermal model
 - kinematic toy model (Kp)
- Obtain estimate for ap

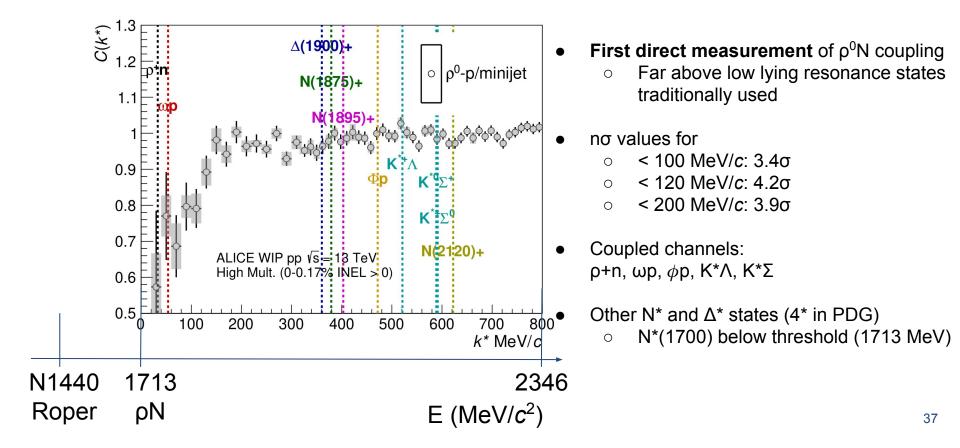
Comparison with model (courtesy of A. Feijoo)



- Use φ-p result to fit parameters of UChPT
- Modification of dynamically generated states
 - PDG links:
 - <u>N*(~1700) (3/2-)</u> (3*)
 - N*(~2000) (1/2-) (4*) (not clear if this is the correct state 1895, formerly 2090)

Threshold - Plots

Π First direct observation of the ρ⁰N coupling



Resonances < 1700 MeV

Resonance	B.R. (%)	k* (MeV)
N(1440)+	0.0133	-
N(1520)+	0.0667	-
N(1535)+	0.0067	-
N(1650)+	0.0267	-
N(1675)+	0.0067	-
N(1680)+	0.03	-

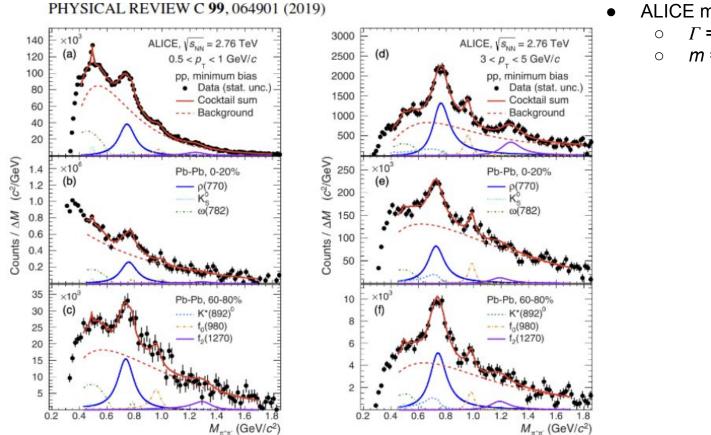
Resonances > 1700 MeV

rho-p	
1713	

Resonance	B.R. (%)	k* (MeV)
Delta(1700)+	0.2	-
N(1710)+	0.05	-
N(1720)+	0.255	77.16
N(1875)+	0.02	379.76
Delta(1930)+	0.22	442.97
N(2190)+	0.0333	680.33
N(2250)+	0.0533	727.49
N(2600)+	0.0533	976.04

Old measurement - Plots

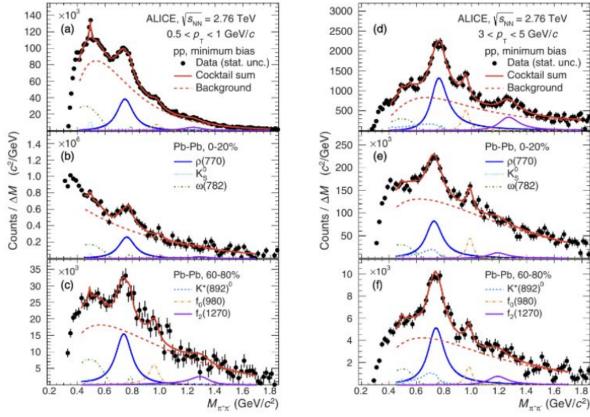
Motivation



- ALICE measurements of ρ⁰
 - Γ = 150 MeV
 - *m* = 775 MeV

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

Motivation



ALICE measurements of ρ⁰

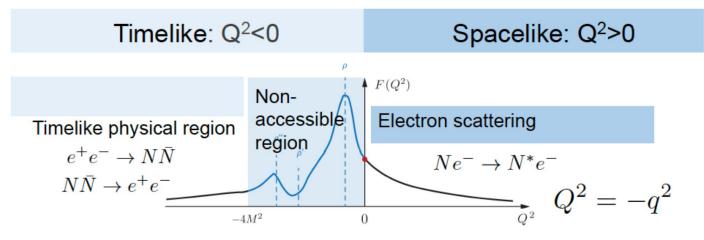
- Important to constrain Vector Meson Dominance Models/ Vector Meson-Baryon interactions
 - couplings; scattering param.
 - validating theoretical approaches
 - First time direct measurement
- Further the understanding of dynamically generated states N* and Δ * (pole positions) from UChPT
- Good candidate to search for signatures of chiral symmetry restoration

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

[○] Γ = 150 MeV

[•] *m* = 775 MeV

Vector meson nucleon coupling



- Important to constrain Vector Meson Dominance Models/Vector Meson-Baryon interactions
- Usually probed by low energy experiments (HADES)
 - Access the time like form factor $(q^2 > 0!)$
 - Test of VDM (Rγ*N vertex) with low lying intermediate resonances N(1440), N(1520), N(1535)
- Important to understand
 - In-medium dilepton production
 - \circ ~ Dynamically generated states N* and Δ^{*} (pole positions) from UChPT

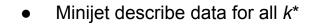
MC - Plots

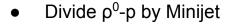
Constraining the minijet MC

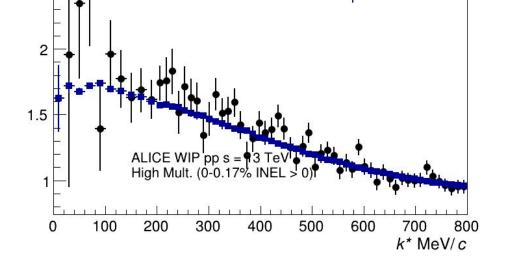
3

2.5

 $C(k^*)$



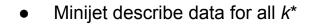


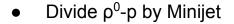


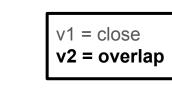
ρ⁰-p (SBv1)

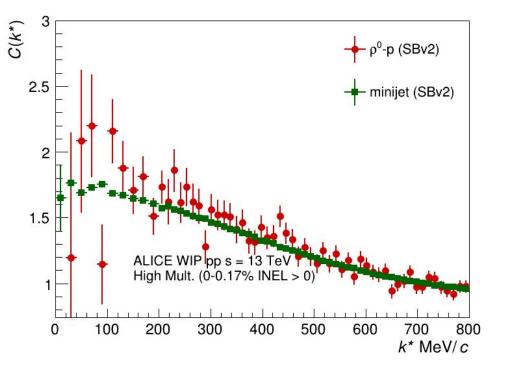
minijet (SBv1)

Constraining the minijet MC

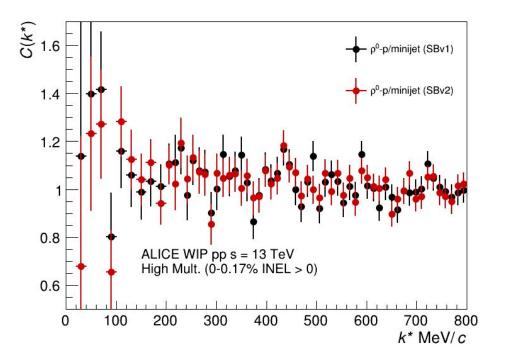






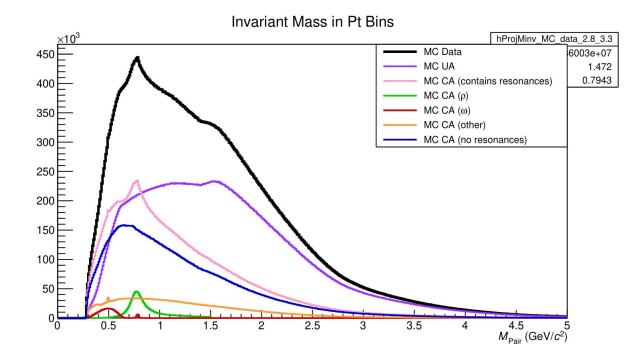


\mathbf{M}^{0} -p without SB and divided for Minijet MC



- Consistent with unity
- No structures
- Re-run whole chain now that trains are available again (anchored to META_17)
 o include META_16 and META_18

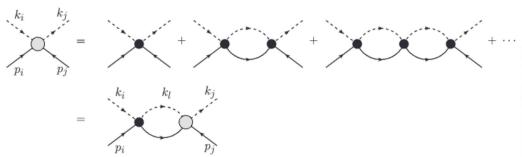
Ancestor Method for ρ (MC only)



- For the fit to data MC UA and MC CA (no reso.) will be used
- In MC no f0 and f2

Unitarised chiral perturbation theory for ρ⁰–ρ

$$T_{ij} = (1 - V_{il}G_l)^{-1}V_{lj}$$



1: A. Feijoo, MK, L. Fabbietti PRD 111 (2025) 1, 014009

Core Idea

- Extract LO interaction form
 Chiral L + Hidden Gauge Symmetry
- Solve Bethe–Salpeter Equation in coupled channels ansatz¹

C _{ij}	$ ho^0 p$	$ ho^+ n$	ωр	φp	$K^{*+}\Lambda$	$K^{*o}\Sigma^+$	$K^{*+}\Sigma^0$
$ ho^0 p$	0	$\sqrt{2}$	0	0	$-\sqrt{3}/2$	$1/\sqrt{2}$	-1/2
$\rho^+ n$		1	0	0	$-\sqrt{3}/\sqrt{2}$	0	$1/\sqrt{2}$
ωρ			0	0	$-\sqrt{3}/2$	$-1/\sqrt{2}$	-1/2
φp				0	$\sqrt{3}/\sqrt{2}$	1	$1/\sqrt{2}$
$K^{*+}\Lambda$					0	0	0
$K^{*o}\Sigma^+$						1	$\sqrt{2}$
$K^{*+}\Sigma^0$							0

