

Al techniques to improve optics measurements based on the Turn-by-turn Beam Position Monitors

Q. Bruant, Y. Nasr, L. Vitileia, J. Piscart, H. Le Corre,

- A. Gomez, C. Ndungu-Ndegwa,
- F. Bugiotti, B. Dalena,
- J. Keintzel, Y. Ohnishi,
- V. Gautard

Thanks to: M. Le Garrec, H. Sugimoto

- Motivation and context
- Current state of SuperKEKB turn by turn BPM analysis
- Anomaly detection
- Signal denoising
- Overview & Perspectives

CONTEXT &MOTIVATION

Context

International FCC collaboration (CERN as host lab) to study:

- 91 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as first step

Feasibility study published in March

Future Circular Collider Feasibility Study Report Volume 2 - CERN Document Server

<- Use of SuperKEKB as a test bench

Motivation and challenges

EPS-HEP Marseille 2025

09/07/2025 6

Improved TbT BPMs data pipeline

ANOMALYDETECTION

ANOMALY DETECTION

ALGORITHMS

DBSCAN / Isolation Forest (IF)

DBSCAN:

- Clustering algorithm in 1vAll config.
 - Hyperspace of features extracted from Multivariate Time Series (MTS)
- Distance-based approach

IF:

- Random-based Binary Forest:
 - Hyperspace of features extracted from Multivariate Time Series (MTS)
- Isolation via random cuts in features

: point in distribution

AutoEncoder

Schematic of an Autoencoder: Encoder \rightarrow Latent \rightarrow Decoder

- Learns to reconstruct input via a compressed bottleneck. 0
- No labels needed fully unsupervised. 0
- Used to learn dominant structures in the full dataset. 0

Definition:

Encoder: $z = f_{enc}(x)$ Decoder: $\hat{x} = f_{dec}(z)$ Autoencoder: $\hat{x} = f_{dec}(f_{enc}(x))$

Loss (MSE):

$$\mathcal{L}_{\mathsf{MSE}} = rac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2$$

Anomaly Score:

$$\mathsf{Score}(x) = rac{1}{HW}\sum_{j=1}^{H}\sum_{k=1}^{W}(x_{jk}-\hat{x}_{jk})^2$$

Thresholding:

Anomaly if $Score(x) > \tau$

ANOMALY DETECTION

PROCESS & RESULTS

Followed process (IF)

We designed a full pipeline to process the data, clean it, extract features and detect outliers

Dataset: several (~few 10s) measurements done in February 2024

LER_2024_02_06 HER_2024_02_06

4/6 from the list of the expected faulty BPM in HER

4/6 from the list of the expected faulty BPM in LER

Several detection in HER that are not in the list

Faulty BPM HER (IF)	Expected faulty BPM HER	Faulty BPM LER (IF)	Expected faulty BPM LER
MQEAE35	MQEAE35	MQD3P23	MQD3P23
MQD3E18	MQD3E18	MQEAP29	MQEAP29
MQD3E23	MQD3E23	MQEAP35	MQEAP35
MQR2ORE	MQR2ORE	MQW2ORP	MQW2ORP
	MQD3E8		MQEAP10
	MQEAE20		MQD3P8
MQLB1LE			
MQC2RE			

Followed process (DBSCAN)

Features extraction by Time2Feat library Features selection by Time2Feat based on a PCA decomposition w/ explainability variance as figure of merit

Features = statistical parameters (mean, variance, skewness, autocorrelation, FFT coefficients,)

> 1 file, all BPMs

For HER:

Dataset: HER_2024_02_06_IK_H_Vinjkick/ HER_2024_02_06_16_22_57.data

Total number of features kept: 37/201

For LER:

Dataset: LER_2024_02_06_IK_H_Vinjkick/ LER_2024_02_06_17_02_14.data

Total number of features kept: 31/207

Results (DBSCAN)

LER_2024_02_06_17_02_14.data HER_2024_02_06_16_22_57.data

Faulty BPM HER (DBSCAN)	Expected faulty BPM HER	Faulty BPM LER (DBSCAN)	Expected faulty BPM LER
MQEAE35	MQEAE35	MQEAP35	MQEAP35
MQD3E18	MQD3E18	MQW2ORP	MQW2ORP
MQEAE20	MQEAE20	MQEAP29	MQEAP29
MQD3E8	MQD3E8		MQD3P8
MQR2ORE	MQR2ORE		MQEAP10
	MQD3E23		MQD3P23
MQEAE25		MQEAP32	
MQEAE33		MQEAP33	
MQD3E29		MQI6P	
		MQEAP38	
		MQEAP44	
		MQD3P29	

HER:

5/6 of expected faulty BPM are detected

LER:

3/6 of expected faulty BPM are detected

Variability for detected BPMs in LER

Followed process (AutoEncoder)

Unsupervised 1D CNN Autoencoder

- **Preprocessing:** Turn trimming (5 turns) & Z-score normalization
- **HER Model:** Trained on 63 (2024_06), inferred on 12 (3995 turns) tracks
- LER Model: Trained on 9 (2024_02_06), inferred on 5 (995 turns) tracks
- **Outlier Detection:** Top 10 BPMs by reconstruction error, aggregated by frequency
- Validation: Compared to known faulty BPMs
- **Output:** BPM outlier frequency plots

Results (AutoEncoder)

HER/2024_06

- **HER Model:** Higher recall (identifies more known bad BPMs)
 - Diagnostic Value: Varied outlier frequencies highlight persistently problematic BPMs
- LER Model: Lower recall; uniform outlier frequencies
 - Limitation: Likely due to significantly smaller training data
- Common Finding: Both models identify additional outlier BPMs not on known-faulty lists critical for further investigation

Overview

view							
HER			LER				
IF	DBSCAN	AutoEncoder	Expected	IF	DBSCAN	AutoEncoder	Expected
MQEAE35	MQEAE35	MQEAE35	MQEAE35	MQEAP35	MQEAP35		MQEAP35
MQD3E18	MQD3E18	MQD3E18	MQD3E18	MQW2ORP	MQW2ORP	MQW2ORP	MQW2ORP
	MQEAE20	MQEAE20	MQEAE20	MQEAP29	MQEAP29		MQEAP29
MQR2ORE	MQR2ORE	MQR2ORE	MQR2ORE			MQD3P8	MQD3P8
	MQD3E8		MQD3E8				MQEAP10
MQD3E23			MQD3E23	MQD3P23			MQD3P23
MQLB1LE		MQFRNE3			MQEAP32	MQC1LP	
MQC2RE		MQEAE30			MQEAP33	MQEAP29	
	MQD3E29	MQLB8RE			MQI6P	MQD3P20	
	MQEAE33	MQEAE27			MQEAP38	MQD3P21	
	MQEAE25	MQEAE25			MQEAP44	MQD3P23	
					MQD3P29	MQD3P29	
						MQD3P38	
						MQD3P11	

DENOISING

09/07/2025 20

Evaluation Metrics for Denoising

Algorithms

Overall Purpose: Compare fast linear filters (SVD) with a more powerful but slower

learning-based method (LSTM)

What is an LSTM

LSTMs work in the same way as RNNs, but each cell is more complex:

- LSTMs maintain a "**cell state**" in addition to the hidden state allowing it to keep longer-term information
- This helps to avoid the vanishing gradient problem

We combine these cells into 3 layers of 50 LSTM cells

- 1. Having a deep model allows it to learn complex relationships in the data
- 2. We add BatchNorm and Dropout for normalization

We train the model on a series of noisy positions

- 1. The model learns the underlying patterns in the data
- 2. We then use the model's predictions as our estimate of the denoised signal

Predictors

Example BPM positions

File used: HER_2024_06_25_23_52_21.data

Results

Metrics	SVD	LSTM	
Peak Retention Ratio	0.99	0,95	
Noise Reduction Ratio	0.45	0.57	
SNR	2.99	8,4	
Frequency Shift	0.0035	0	
Time to denoise	< 1 min	~ 1h	

Models comparison with SOMA

FFT Spectrum: Original vs LSTM - MQEAE16 y Original Data Denoised Data 10-2 Amplitude [mm] 10-4 0.0 0.1 0.2 0.3 0.4 0.5 Fractional Tune FFT Spectrum: Original vs SVD - MQEAE16 y Original Data - Denoised Data 10-2 Amplitude [mm] 10-10-5 0.0 0.1 0.2 0.3 0.4 0.5 Fractional Tune

26

Full Overview

- Comparison of 3 ML algorithms (Isolation Forest (IF) vs Density Based Spatial Clustering Application w/ Noise (DBSCAN) vs AutoEncoder)
- Detection of ~66% of previously identified faulty BPMs in both rings
 - IF appear to have the greater purity, DBSCAN the greater efficiency, AutoEncoder seems to be the most robust
- More powerful denoising with LSTM vs current SVD at expense of getting a frequency-dependent denoising and longer computation time

Perspectives

- Characterize precisely the algorithms on simulated BPMs signals both for SuperKEKB and FCC-ee High Energy Booster
- Further understanding and refinement of the algorithms
- Reconstruct the Optics functions with SOMA on denoised data
- Look at other AI techniques (ESN, DeepNN, etc,...)

Thanks for your attention

Example of superKEKB TbT BPMs analysis

Spectra of June 17 - 2024 measurements employing Harpy (from SOMA)

Example of superKEKB TbT BPMs analysis

Encoder

- 4 Conv1D + ReLU
- Kernel sizes: [7, 7, 5, 5]
- Stride = 2
- Channels: $1 \rightarrow 16 \rightarrow 32 \rightarrow 64$ $\rightarrow 128$ EPS-HEP Marseille 2025

Decoder

- 4 ConvTranspose1D + ReLU
- Kernel sizes: [5, 5, 7, 7]
- Stride = 2, output padding = 1
- Final crop: match 3995-point input

Data & Training

- Input: 3995-point BPM traces
- Normalization: mean/std per trace
- Optimizer: Adam (10⁻³), Batch size: 16, Epochs: 50, Loss: MSE

09/07/2025 31

œ

Examples of features

09/07/2025