Polarized Positron Sources at Future Linear Collider Designs (ILC, HALHF,CLIC)

- Motivation
- Status ILC positron source
- Undulator Source for CLIC
- Upgrade for HALHF e+ design
- Conclusion

G. Moortgat-Pick, M. Formela, N. Hamann, D. Lott, T. Lengler, G. Loisch, S. Riemann, P. Sievers, C. Tenholt, M. Trautwein, G. Yakopov

Motivation

Immediate need for

- Higgs sector high precision measurements
- Top quark high precision measurements
- Electroweak high precision measurements
- New `windows' for detecting BSM physics effects (CP violation, DM,...)
- → exploit complementarity of pp and e+e- colliders with stages:√s=Z-pole, WW, 250, 350, 550, >1000 GeV and polarized beams
- would cover precision & energy frontier simultaneously

LCvision, C. Balazs, arXiv: 2503.19983

Offer

- an high Lumi e+e- Linear Collider, upgradeable to new technologies!
- powerful positron sources required

➡ focus today...

Remember the past: physics gain of polarized beams

- Past experience:
 - excellent e- polarization ~78% at SLC:
 - led to best single measurement of sin²θ=0.23098±0.00026 on basis of L~10³⁰ cm⁻²s⁻¹ (~600000 Z's)
- Compare with results from unpolarized beams at LEP:
 sin²θ=0.23221±0.00029 but with L~2x10³¹cm⁻²s⁻¹ (~ 17 million Z's)
- Polarization essential for suppression of systematics
- can even compensate order of magnitude in luminosity for specific observables!

Polarized e- sources well under control, why in addition polarized e+ required.....?

Short reminder: why are polarized e[±] needed?

- Important issue: measuring amount of polarization
 - limiting systematic uncertainty for high statistics measurements
 - Compton polarimeters (up- /downstream): envisaged uncertainties of ΔP/P=0.25%
- Advantage of adding positron polarization:
 - Substantial enhancement of eff. luminosity and eff. polarization
 - new independent observables
 - handling of limiting systematics and access to in-situ measurements: ΔP/P=0.1% achievable!
 - Windows to new physics (couplings, chirality, interaction structures)!
- Substantial physics impact: EWPO, Higgs-Physics, WW/Z/top-Physics, New Physics !

Literature: polarized e+e- beams at a LC (only a few examples)

- LCC-Physics Group: 'The role of positron polarization for the initial 250 GeV stage of ILC', arXiv: 1801.02840
- G. Moortgat-Pick et al. (~85 authors) : `Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/0507011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)
- T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24,...

EPS@Marseille, July 2025

Moortgat-Pick et al.

:Ir

Most mature LC design: ILC

• The polarized e+ source scheme: use helical undulator!

• ILC e+ beam parameters (nominal luminosity)

Number of positrons per bunch at IP	2×10 ¹⁰	
Number of bunches per pulse	1312	
Repetition rate	5 Hz	That's about a
Positrons per second at IP	1.3×10 ¹⁴	factor 100 more
Dequired positrop viold, V = 1 Eq. (o ot domning ri	

Required positron yield: Y = 1.5e+/e- at damping ring

Overview positron requirements

	rep rate/Hz	#bunch/pulse	#e+/bunch	#e+/pulse	#e+/s
SLC	120	1	5x10 ¹⁰	5x10 ¹⁰	6x10 ¹²
ILC/Tesla	5	1312	2x10 ¹⁰	2.6x10 ¹³	1.3x10 ¹⁴
CEPC	100	1	2x10 ¹⁰	2x10 ¹⁰	2x10 ¹²
CLIC	50	312	4 x10 ⁹	1.2x10 ¹²	6x10 ¹³
HALHF	10000	1	2-3x10 ¹⁰	2-3x10 ¹⁰	2-3x10 ¹⁴

- ➡ HALHF: More challenging e+ request as ILC
- ➡ Adaption of ILC e+ source for HALHF

EPS@Marseille, July 2025

Operation of the Undulator

- Undulator in operation@XFEL:
 - XFEL: 91 undulators with 5m length each
 - energy loss due to particle loss negligible small (unmeasurable)
 - beam alignment up to 10-20 microns for 200 m (undulator length), remeasured every 6 months
 - during beam operation: beam trajectory controlled better than 3 micron with both slow and fast feedback systems
- Stable operation and alignment experience
 - Beam requirements at XFEL more challenging than at ILC due to FEL requests of photons
 - Tolerances of IIC undulator more relaxed than for XFEL!
- Precise simulations based on XFEL&UK prototype:
 - realistic fields, mask system, power deposition for at GigaZ, ILC250, ILC500
- Results: no operation&alignmenta&heat issues

ILC Undulator technology - Status

- Parameters
 - Undulator period, $\lambda_{\rm U}$ =11.5mm
 - Undulator strength K \leq 0.92 (B \leq 0.86T); K ~ B $\cdot\lambda_{U}$
 - Undulator aperture 5.85mm
- 4m prototype built and tested (UK)
 - Cryomodule, contains 2 undulator modules of 1.75m length each

- ILC TDR (2013):
 - Max 231m active undulator length available (132 undulator modules in 66 cryomodules]

- Quadrupoles every 3 cryomodules \rightarrow total length of undulator system is 320m

Target System

- Target Specifications:
 - Titanium alloy, 7mm thick (ILC250: $0.2 X_0$), 14mm (ILC500), diameter 1m
 - Rotating at 2000 rpm (100 m/s tangential speed) in vacuum
 - Photon power ~60 kW, deposited power ~2 kW
 - Radiation cooling
- Status target material tests up to 2024
 - Target load tests at MAMI Beam
 - Multiple annual PEDD loads & thermal loads on target
 - In addition: dilatometer tests, different target thicknesses, etc.
 - Precise target analyses with synchrotron diffraction & scanning methods

• Results: no damage, ILC target will stand the load !

➡ Specifications will be matched!

EPS@Marseille, July 2025

Moortgat-Pick et al.

T. Lengler, D. Lott

The ILC positron target

- Is located ~240m downstream the undulator end
- 62 kW photon beam ⇔ about few 10¹⁶ photons/second
- Only few % of the photon beam power is deposited in the target

The positron target

- Photon beam hits wheel at 1m diameter, spinning in vacuum with 2000rpm (100m/s tangential speed) → distribute the heat load
 - One pulse with1312 (2625) bunches occupies ~7 (~10)cm
 - Every ~7-8sec load at same target position
 - in 5000h roughly 2.5×10⁶ load cycles at same
- ILC250, GigaZ: E(e-) = 125GeV
 - Photon energy is O(7.5 MeV);
 - target thickness of 7mm to optimize deposition and e+ yield
- Target cooling
 - T⁴ radiation from spinning wheel to stationary water cooled cooler
 - Peak temp in wheel ~550°C for ILC250, 1312bunches/pulse ~500°C for GigaZ, 1312bunches/pulse

assuming the wheel is a full Ti alloy disk (~simple design solution).

preacc.

Target System

Status Protyping Rotating Wheel and Cooling

- Radiation cooling allows use of magnetic bearings
- Standard component to support elements rotating in vacuum
- Allows long time operation at high rotation speed without maintenance
- Often used as Fermi-choppers in Neutron Physics
 and Spallation Sources
- Technical specifications of ILC Wheel updated (P. Sievers, S. Doebert, G. Yakopov)
- mechanical drawings and already LOI agreement exchanged with SKF Magnetic Bearings (Canada)
- Results: currently close discussion with SKF
- No technical issues expected, specifications will be matched!

Grigory Yakopov '25

Cooling of the target wheel

S. Riemann, P. Sievers

Side view cutout e+ target

- Few kW heat deposition can be removed with thermal radiation:
 - heat radiates from spinning target to a stationary water-cooled cooler

$$P \sim \sigma \epsilon A \left(T_{radiator}^4 - T_{cool}^4 \right)$$

 ϵ = effective emissivity

- Ti alloys have low thermal conductivity $(\lambda = 0.06 0.15 \text{ K/cm/s})$
 - heat propagation ~ 0.5cm in 7sec (load cycle)
 - heat accumulates in the rim near to beam path

Magneting focussing and e+ capturing

Baseline Design OMD: Pulsed solenoid

- Detailed simulations of winding, eddy currents magnetic shielding
- Yield of e+ (OMD&capture Linac): 1.64-1.81

Fukuda, 2021

C. Tenholt 2021

	Beamloss Power				Positron Yield	
	@dogleg	@booster	@EC	@DR	@capture (Z <7mm)	@DR
QWT	0.677 kW	0.014 kW	4.01 kW - 5.56 kW	13.15 kW - 14.3 kW	1.07	~1.1
Pulse solenoid w/o shield	0.927 kW	0.055 kW	5.86 kW - 7.93 kW	17.39 kW - 16.01 kW	1.81	1.91
Pulse solenoid with shield	0.871 kW	0.064 kW	5.58 kW - 7.90 kW	17.73 kW - 16.24 kW	1.64	1.74

Magneting focussing and e+ capturing

- Baseline Design OMD: Pulsed solenoid
 - Detailed simulations of winding, eddy currents magnetic shielding
 - Yield of e+ (OMD&capture Linac): 1.64-1.81

Fukuda, 2021

G. Yakopov 2023

Status Protyping Pulsed Solenoid

- ITN initiative: manufacturing drawings&construction at DESY/UHH
- Close ahead series of prototypes measurements
- Comparison of field measurements with simulations
- Several runs with different pulse modes/currents planned
- Results: expected soon and in time with protptype wheel

Hamann, Yakopov '25

EPS@Marseille, July 2025

Undulator system adaptation for√s≥1 TeV Designs

- Undulator parameter set for ILC1000 exist
 - Higher drive beam energy, higher K
 - Start-to-end tracking can be done
- CLIC
 - Design down by Wei Gai exists, already shown at IPAC 2010
 - Update of parameters under work with new automatized tools
- H(ybrid)A(symmetric)L(inear)H(iggs)F(actory) Design
 - Higher drive beam: 375 GeV
 - Automatized simulation code for optimized parameter sets
 - Needs 2-3 times more positrons than ILC
 - Parameter sets with yields of 3-4 feasible, still under work!
- Results: polarized e+ also feasible for higher energy LC options \Rightarrow Simulations and Concepts for $\sqrt{s} \ge 1$ TeV Designs exist already!

EPS@Marseille, July 2025

1TeV upgrade: Polarization@Und_{E(e-)=500} GeV

Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y

- K = 2.5, period λ =43 mm, higher harmonics, higher yield
- Apply photon collimator:

• High P(e+) achievable: ~54%

capture & target issues have to be addressed, but now more knowhow on OMD (PS, etc.)

EPS@Marseille, July 2025

Moortgat-Pick et al.

Ushakov ea

1301.1222

Recap Undulator system for CLIC

• Drive beam e-=250 GeV:

W. Liu , W. Gai ea IPAC 2010

Radius of photon collimator iris (cm)

- Undulator period, $\lambda_U = 11.5$ mm
- Undulator strength K ~ 0.9 (B ~ 1T); K ~ $B\cdot\lambda_U$
- Undulator length 127 m,
- Photon collimator 0.7 mm with distance to target 400m
- ➡ P(e+)~60%
- Updated parameters including acceptance of (pre-)damping ring under work

$H_{(ybrid)}A_{(symmetric)}L_{(inear)}H_{(iggs)}F_{(actory)} \ Design$

B. Foster, R. D'Arcy, C.A. Lindstrom

Facility length: ~5 km

E. Adli et al, arXiv: 2503.19880, 2503.23489

Positron Source:

- Undulator-based source: mature for ILC parameters
 - e- drive beam: 375 GeV from PWA
 - higher physics potential
- Higher yield required
 - optimized simulations ongoing

M. Trauwein, M. Formela, N. Hamann

Some basics: just as an overview

Basic formula for photon spectrum of Helical Undulator given by Kincaid (1978) [3]:

K. Alharbi

$$\frac{dW}{d\omega} = \frac{N_p q^2 K^2 r}{\epsilon_0 C} \sum_{\substack{n=1\\2\gamma^2\omega_0}}^{\infty} \left(J'_n (x_n)^2 + \left(\frac{a_n}{K} - \frac{n}{x_n}\right) J_n (x_n)^2 \right) u(a_n)^2$$

$$N_p = period number, \ n = harmonic number, \ r = \frac{\omega}{2\gamma^2\omega_0}, \ a_n = \frac{n}{r} - 1 - K^2, \ x_n = 2Kra_n, \ J_n = \text{Bessel function}$$

$$K \text{ is the deflection, } K = 0.0934 \ B_o \lambda_u.$$

$$\lambda_u \text{ is the undulator period.}$$

$$B_o \text{ is B-field on axis.}$$

$$L_u \text{ is the undulator active length} = N_p \lambda_u.$$

The relationship between the energy of the electron beam (E_e) and the 1st harmonic cutoff energies of the photon spectrum (E_1):

The upper half of the energy spectrum at any order n is emitted into a cone of angle:

$$\theta \approx \frac{1}{\gamma} \sqrt{1 + K^2}$$
, γ is Lorentz factor.

EPS@Marseille, July 2025

Moortgat-Pick et al.

 $E_1 \propto \frac{E_e^2}{\lambda (1 + K^2)}$

Simulations with CAIN

M. Trautwein et al.

Implementation of collimator at K=2.5, λ_{μ} =4.3cm

Fig. 3: Photon energy distribution without collimator

#Photons: 222,563

HALHF-Parameters: E=375 GeV, ϵ_x =90 µm, ϵ_y =0.32 µm, σ_z = 0.04 mm

- Photon collimator required
- High yield and polarization required
- Optic matching device: adapt pulsed solenoid

Fig. 4: Photon energy distribution with collimator (R=0.8mm)

#Photons: 29,315

Simulations with CAIN

M. Trautwein et al.

Implementation of collimator at K=2.5, λ_u =4.3cm

Fig. 5: Photon distribution on target without collimator

Fig. 6: Photon energy distribution on target with collimator (R=0.8n

#Photons: 222,563

#Photons: 29,315

- Photon collimator required: still thoughts on geometry
- High yield and polarization required
- Optic matching device: adapt pulsed solenoid

Simulations with CAIN

Implementation of collimator at K=2.5, λ_u =4.3cm

Yield	Photon Pol.	Parameter	Period	Length	\mathbf{Field}	Collimator	
e^{+}/e^{-} [1]	P [1]	K _u [1]	λ_u [cm]	L_u [m]	B [T]	a [mm]	b [mm]
7.1	0.811	3.0	2.5	241.5	1.28	1.5	1.0
8.2	0.762	2.5	2.5	231	1.07	1.5	1.0
9.4	0.780	2.0	2.0	252	1.07	1.5	0.5

M. Trautwein

- Still higher yields achievable
- Optimization for undulator parameters (K, λ_u , etc)

Conclusions

Polarized positron sources@ILC from GigaZ to >500 GeV:

- Simultaneous e+ polarization allows best control of systematics, higher statistics, best physics results
- ILC undulator-based source mature and feasible
- prototype work on pulsed solenoid and rotating wheel ongoing

Polarized positron sources@CLIC:

 recap of parameters, simulation update under work, yield requirements matched

HALHF plans (~8 km whole device....):

- new technology (PWA) in combination with SRF
- adapt e⁺-based ILC undulator parameters for HALHF e- beam of 375 GeV (instead of 125 GeV for ILC250)
- challenge: more e+ at IP needed than e+@ILC!

Polarized positron sources for future LC are feasible, optimize physics and involve and combine new technologies! 24

EPS@Marseille, July 2025

_ilc

GigaZ operation

Parameters for GigaZ operation

Yokoya-san, 1908.08212

Parameters	e ⁺ production	collision	Unit
Final beam energy	125	45.6	GeV
Average accelerating gradient	31.5	8.76	MV/m
Peak power per cavity	189	77.2	kW
Beam pulse length	0.727	0.727	ms
RF pulse length	1.65	1.06	ms
Repetition rate	3.7	3.7	Hz

Incident power at undulator walls: Compare GigaZ and ILC250

➡ Incident power at GigaZ below /comparable with ILC250

Mask protection will also be sufficient for GigaZ running

EPS@Marseille, July 2025

OMD Design: Pulsed Solenoid

'Baseline': Pulsed Solenoid

- Yield of e+ (OMD&capture Linac): 1.64-1.81 Fukuda-san, 2021
- Within ITN initiative: manufacturing drawings at DESY G. Yakopov 2023
- Planned: prototype will be sent and tested at CERN

C. Tenholt 2021

	Beamloss Power			Positron Yield		
	@dogleg	@booster	@EC	@DR	@capture (Z <7mm)	@DR
QWT	0.677 kW	0.014 kW	4.01 kW - 5.56 kW	13.15 kW - 14.3 kW	1.07	~1.1
Pulsed ´solenoid w/ o shield	0.927 kW	0.055 kW	5.86 kW - 7.93 kW	17.39 kW - 16.01 kW	1.81	1.91
Pulsed solenoid with shield	0.871 kW	0.064 kW	5.58 kW - 7.90 kW	17.73 kW - 16.24 kW	1.64	1.74

Focusing System for Undulator Scheme

- The critical item for the undulator scheme is the magnetic focusing system right after the target
- Possible candidates are: (a) Pulsed solenoid, (b) Plasma lens
- The strongest candidate is (a) pulsed solenoid.
- ♦ R&D items ongoing:
 - \succ Detailed simulations for (a) (already on-going)
 - Principal design & engineering for a prototype pulsed solenoid
 - Plans: Field measurements with 1kA (pulsed and DC) and with 50kA both in a single pulse mode and finally with pulse duration of 5ms at 5 Hz
 - Prototype plasma lens (funded study on-going, see Niclas talk)

Undulator: Simulation (field errors, alignment)

- Misalignments:
 - beam spot increases slightly, yield decreases slightly
- Realistic undulator with B field (K) and period (λ) errors
 - provides beam size, polarization, target load
 - impact depends on K-value!
- Synchrotron radiation deposit in undulator walls
 - Masks protect wall to levels below 1W/m
 - ILC250: power deposition in 'last' mask near undulator exit: ~300W

K. Alharbi, 2024

- Result: Masks substantial but sufficient in all cases!
- Studied for ILC250, ILC350, ILC500 and GigaZ !

EPS@Marseille, July 2025

Analyses of ILC targets

- History: target material tests at Mainz Microtron (MAMI) using e-
 - Strategy: electron-beam on ILC target materials, generating cyclic load with same/ even higher PEDD at target than expected at ILC
 - Numerous successful tests performed on Ti-Alloy, W
 A. Ushakov et al.
 - target analyses with both scanning and synchrotron diffraction methods
- Ongoing: (final) tests, analyses and publication
 - test runs at MAMI until 9/24
 - dilatometer tests: disentangling target damage originating from thermal vs radiation load
 - α and β phase of Ti-alloy depend on T, have different mechanical properties
 - Tested: fast and cyclic stress in the range of T=300°-800°C
 - variation of T_{max} as well as different heating/cooling rates of 25°C/s-100°C/s
- Result: ILC undulator target will stand the load !

Moortgat-Pick et al.

T. Lengler et al.

Analyses of ILC targets

- History: target material tests at Mainz Microtron (MAMI) using e-
 - Strategy: electron-beam on ILC target materials, generating cyclic load with

Result: ILC undulator target will stand the load !

Temperature distribution in target

Average temperature in Ti6Al4V wheel as function of radius r for different surface emissivity of target and cooler (Cu); Target wheel assumed as disk

Studies (FLUKA, ANSYS) show that such spinning disk stands heat and stress load

EPS@Marseille, July 2025

Grigory Yakopov

Cross-section of the vacuum chamber with rotation target wheel, magnetic bearing system, and pulsed solenoid

Diameter of wheel: 120 cm, 2000 rpm Tangential velocity at r=50 cm: 100 m/s The mass of the wheel 50 kg (without shaft) Ti-alloy target 7mm thickness The repetition rate of the beam pulses is 5 Hz Heat input around the wheel is about 2 kW Thermal radiation cooling from both sides of the target

DESY. Mechanical design studies of the pulsed solenoid for positron sources | Grigory Yakopov, Tokyo

ILC Undulator with E(e-)=500 GeV Goals: high #e+@DR, high P(e+)>30%, target lifetime~1y Proposal: Use new undulator parameters

 \Rightarrow e.g. higher K = 2.5, period λ=43 mm

Ushakov ea 1301.1222

➡ leads to more higher harmonics, higher yield,

- higher γ_{ave} energy and higher energy spread
- Iarger γ spot size

e+ capture more difficult....but more know-how on (PS, PL) now!

Formela, Hamann, Loisch

OMD Design: Plasma Lens

'Future': Plasma Lenses

- increases e+ yield but increases load at target only slightly
- advantages in matching aspect
- downscaled prototype designed and produced

EPS@Marseille, July 2025

see IPAC 24

OMD Design: Plasma Lens

Prototype design

- Principle: lens is pressed in between mounts with threaded rods and sealed with O-rings
- Mounts made out of PEEK
- Electrodes made out of copper
- Plasma lens made out of sapphire block

Produced plasma

Formela, Hamann, Loisch

Ingoing current measured

EPS@Marseille, July 2025

--ilc

OMD Design: Plasma Lens

IPAC 24, Formela, Hamann, Loisch, et al

Prototype Plasma Lenses

- plasma achieved, first measurements done
- surprising copper coating from electrodes ...
- on simulation side: Ar implementatio

please stay tuned, lots of exciting work on prototypes ongoing !

G. Moortgat-Pick et al, ITN Meeting, Tokyo 7/24

EPS@Marseille, July 2025