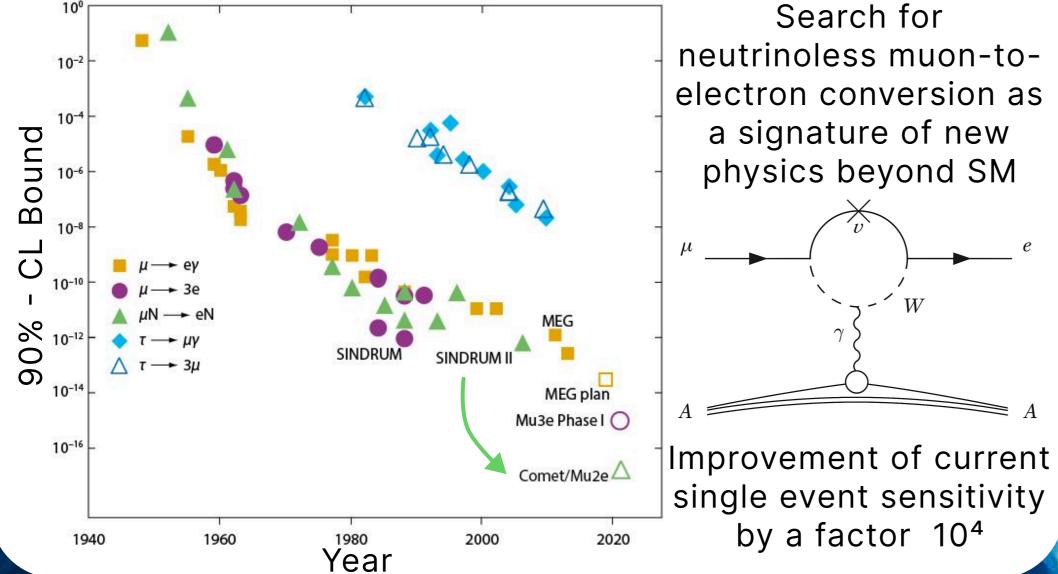
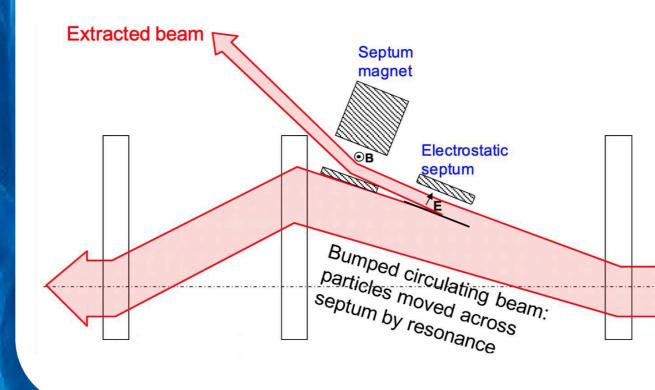

ENHANCING PROTON EXTRACTION FOR THE MU2E EXPERIMENT

Pierluigi Fedeli (University and INFN of Ferrara) On behalf of the Mu2e Collaboration

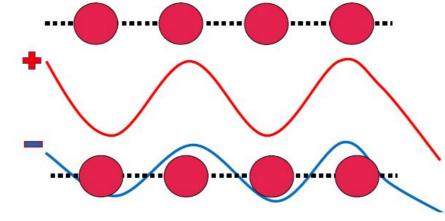


Università degli Studi di Ferrara

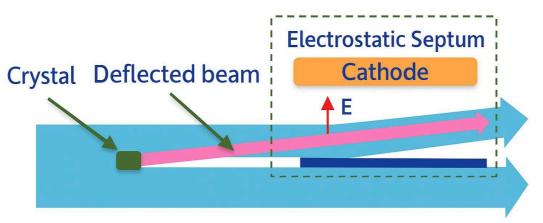

Mu2e Physics goal

neutrinoless muon-toelectron conversion as a signature of new physics beyond SM

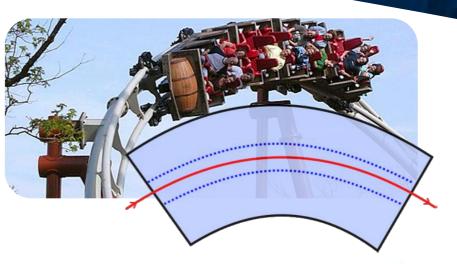
Mu2e requirements


- 1. High statistics: highest intensity muon beam in the world 2. High background rejection: pulsed proton beam structure to reject Radiative Pion Capture
- 3. High detector precision

The pulsed proton beam is extracted via resonant extraction. **Issue:** a fraction of the beam interacts with the septum material, causing about 1.5% of beam losses and unwanted radiation damage. [1]


Septum snadowing with pent crystals

1. Channeling: particles aligned with atomic planes are bound to oscillate in the atomic potential well. Channeling works very well with **positively charged** particles such as protons.



2. In a **bent crystal** channeled particles follow the curvature of the lattice plane which acts as a sort of wave-guide.

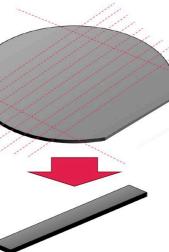
3. Idea: implement an optimized bent crystal upstream of the electrostatic septum to reduce particle loss.

4. A large steering power can be obtained in few millimeters of crystal, equivalent to that of hundreds of Tesla magnetic dipole. This technology is already implemented into LHC.

	Energy (GeV)	Deflection (µrad)	Size (mm)	Equivalent dipole(T)	
	6500	50	4	271 <	LHC
	8	300-600	3	2.65-5.30	Mu2e
,	8	300-600	2	4-8	INIUZ C
	2000	14000	70	1333	

Simulations

GEANT4 Simulation – Bent Crystal PDF Channeling Volume Capture Dechanneling [mrad]

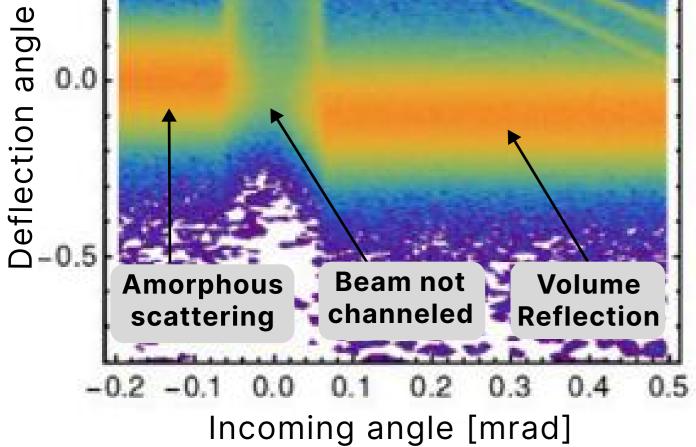

Simulations of a silicon-oriented bent crystal with a 600 µrad bending angle and 3 mm thickness, using Fermilab Delivery Ring beam parameters

Silicon bent crystal realization

Width (w)

Height (h

1. Cutting

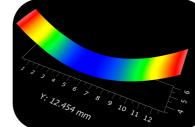


Parallelepipedshaped samples were obtained with micrometric precision using dicing blades bonded with

2. Crystal bending scheme

A holder forces the crystal into arched position. A very uniform secondary anticlastic Primary Curvature curvature appear as elastic reaction of silicon.

[2]



A preliminary beam loss reduction of a factor 3 is estimated for a beam with 40 µrad angular divergence.

[2-3]

micro-diamonds.

3. Curvature characterization

A 2D measure of surface profile is achieved with nanometric precision with interferometric profilometer

4. Torsion Characterization

Torsion <10µrad/ mm is required for good steering efficiency. The optical characterization estimates ~5µrad/mm.

5. First beam test scheduled in August 2025 at CERN H8

References:

[1] Mu2e Collaboration, Universe 2023, 9(1), 54.

DOI: 10.3390/universe9010054

[2] V. Nagaslaev, et al., Nucl. Instr. Meth. A, 1058 (2024) 168892. DOI: 10.1016/j.nima.2023.168892

[3] S. Miscetti, et al., Nucl. Instr. Meth. A, 1073 (2025) 170257. DOI: 10.1016/j.nima.2025.170257

Discover more!

Scan the QR code or join my parallel talk at EPS-HEP: 📁 10 July 2025 – 🕢 08:30 Session T13

