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Understanding Double Beta Decay and Detection Challenges

Three possible Double beta plus modes:

* Single beta decay is not allowed for * PB*B* —double positron emission
i o Double beta decay Neutrinoless double beta decay . ECB+ electron Capture + pOSitron emission
certain even-even nuclei ﬂ -
mf\cj  ECEC —double electron capture
* Only possible decay is simultaneous D,) » All three modes can occur without neutrino emission, violating lepton number
emission of two beta particles - . 5 conservation and one of the few ways to probe the Majorana nature of neutrinos
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~ * Energy spectrum of double beta decay is continuous
e This process is possible as: / :).) * Neutrinoless mode introduces a sharp peak at the endpoint
* Double beta minus (B~B~) decay . B . ,
+ Double beta plus (B*B*) decay y _ * Requirements for detecting double beta decay:
N,Z even (A.Z) > (A, Z£2) + 267 +27 * Excellent energy resolution especially at the endpoint
e Effective background suppression due to the long half-life

. | . | | e BB decay observed in 14 isotopes
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Atomic Number B*B* decay unobserved ... yet _ , N/ ¥y ,
Scheme of the energy spectrum of a neutrinoless double beta decay «  Decay signature = better background discrimination of positrons than electrons
* New detector technologies needed to enable detection of Neutrinoless decay

Opaque Scintillator

Mass parabola for even mass number isotopes

Hybrid Scintillator
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* Electrons emit Cherenkov and scintillation light 2 40 * Electrons: Create a short ionization trail = single blob _ Cae i -
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e Positrons with same scintillation yield, produce less Cherenkov light ~ . * Gammas: Undergo multiple Compton scatters = multiple L L N | .
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due to annihilation gammas = clear distinction from electrons ol - GW G L A blobs x (cm) x (cm)
o . . Y /I R e s * Positrons: Combination of electron like blobs and two Simulation of different particles to demonstrate particle
* Cherenkov-to-scintillation ratio (CS-ratio) = particle discrimination Simulated CS-ratio for several backgrounds gamma scatters discrimination strategy *
* Different particles form distinct populations in CS-ratio space and signals *

Combined Double Beta Plus Detector

OWL fibers

@ - .
* Neutrinoless Double beta Plus Plus detector > N U Dou bt+ T * Optimised WaveLength-shifting
’ (OWL) fibers
 Combined hybrid and opaque scintillator technologies 6 _ AT A ‘ -;,x_ — optical fibers with high photon
e event reconstruction and strong particle discrimination AR capture rate

* especially good for beta plus signatures 4 . . - OWL-fibers under UV light
* Absorb photons and isotropic reemission at higher wavelength
* Primary goal is the search for neutrinoless double beta plus decay 3  Only photons at specific angles fulfill the total internal reflection

(TIR) condition and get trapped inside the fiber
—> larger trapping cone for photons emitted at larger radii

* Also suitable for other background-sensitive experiments
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* Krypton-78 as the double beta decay isotope 1 ‘l.'

* First observation of standard double beta plus decay . Commercial fibers. 0.8 e
* Setting new limits on the neutrinoless mode o 0.7 o
e wavelength shifter in —— 6.=38.68" (PS-air)
) . 2067 --- 6.=67.67" (PS-NoWaSH)
* NuDoubt™ detector consists of: 2 the whole fiber 5
 Active target volume (1) in the center « OWL fibers: g 7
- hybrid opaque scintillator, loaded with krypton-78 * shifter-free coreanda ¢ %% P
* Inner detector (2) highly doped outer 503
— hybrid opaque scintillator but without Krypton 5 coating = 0.2 /
. Wavelength-shlftlng optlca! fibers (3) through target and + This design improves 0] e -
inner vessel 2 read out by SiPMs (4) ) -
. Outer veto layer (5) trapping by a factor of 2-4 Y 0.2 0.4 0.6 0.8 1.0
com ared tO CommerCiaI relative emission offset radius xg
- transparent scintillator volume with PMT (6) readout NuDoubt** detector * fiberz Simulated trapping efficiency along the fiber radius for

polystyrene fibers with contact to air or NoWaSH (Wax) *

High-Pressure Scintillator Test Cell

» Scintillator loading with krypton tested with dedicated test cell (0.5 L)
e Possibility to measure:

NuDoubt™ Sensitivity
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* 34 known B*B* isotopes but only few
have high enough Q-values
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~ above 2.6 MeV Thallium-208 2 ]— ey ket * Pressure-dependent loading factor up to 5 bar overpressure
. E?ckfrou;sd' N it SR R B » Transparency of loaded scintillators ) cmchment
ypton-78 is a promising candidate . | o
but 0.4% natural abundance = z * Krypton gas is bubbled through the scintillator at controlled pressure
T 022
e |ncrease number of Kr-78 atoms: =0 * Loading factor is measured using single beta decay of krypton-85
- Isotope enrichment up to 50% 107 * Two 2-inch PMTs detect scintillation light via UV-transparent windows on v |
* Pressure loading up to 5 bar to T e | RS S N B opposite sides of the cell < Inlet pipe
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|n.crease h;w much’ gas can be Number of Kr-78 Atoms per ton LS * Additional PTFE inserts improve light collection properties by altering shape
. L. 1026_g ===l O.Zt% NaF. abundance UV S :
NuDoubt sensitivity study shows the e * Kr-85 isotope not naturally occurring, produced near nuclear power plants .

half-life limits based on: 102§ —. 1 bar abs

— Abundance depends on the source of extraction

e Detector mass and runtime % ol 1 >bar ovey pressure Cut view scheme of the test cell
= slanted lines < ? e Calibration with ultra low background proportional counters in collaboration with the MPIK for Nuclear Physics
* Enrichment and overpressure £ 10%+ .
- vertical lines and linestyle E 102 : * Optimized for radon contamination in xenon Anode wire (W)  Cathode (Fe or Si) Stop cock Connector
* Half-life expectation for the normal f i * For krypton activity measurement ‘ \\\
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e NuDoubt** prototype ‘i;.l’ - Number of Kr-78 Atoms per 1fon LS actual krypton activity measurement Active volume (~1 c'm'3) | Quartz glass body | 5 cm » FUR KERNPHYSIK
Sensitivity limits for normal (top) and neutrinoless (bottom) Sketch of the miniaturized ultra-low background proportional counter

double beta decay for a NuDoubt** style detector *

Sources:
*  Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays, M. Bohles et al., 2024
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