Search for Double Beta Plus Decays in Novel Scintillators in NuDoubt⁺⁺

Magdalena Eisenhuth on behalf of the NuDoubt⁺⁺ collaboration

- Single beta decay is not allowed for • certain even-even nuclei
- Only possible decay is **simultaneous** • emission of two beta particles \rightarrow Double beta decay (DBD)
- This process is possible as:
 - Double beta minus ($\beta^{-}\beta^{-}$) decay
 - Double beta plus ($\beta^+\beta^+$) decay
- $\beta^{-}\beta^{-}$ decay observed in 14 isotopes • $\beta^+\beta^+$ decay unobserved ... yet

Understanding Double Beta Decay and Detection Challenges

• Three possible **Double beta plus** modes:

- $\beta^+\beta^+$ double positron emission
- **ECβ**⁺ electron capture + positron emission
- **ECEC** double electron capture
- All three modes can occur without neutrino emission, violating lepton number conservation and one of the few ways to probe the Majorana nature of neutrinos
- Energy **spectrum** of double beta decay is **continuous**

viscous

translucent

Different wax concentrations leading to an opaque

- Neutrinoless mode introduces a **sharp peak** at the endpoint
- Requirements for detecting double beta decay:
 - Excellent energy resolution especially at the endpoint
 - Effective **background suppression** due to the long half-life

Opaque Scintillator

opaque

Scheme of the energy spectrum of a neutrinoless double beta decay • Decay signature \rightarrow better background discrimination of positrons than electrons

New detector technologies needed to enable detection of Neutrinoless decay

Hybrid Scintillator

- Separation of **Cherenkov (C)** and **scintillation (S)** light
 - Enables better **particle discrimination**
 - Slow organic scintillators with slow flours \rightarrow delay scintillation by 10 ns causes **time separation** from prompt Cherenkov light
 - Different particles create different amounts of C and S light
- Electrons emit Cherenkov and scintillation light
- Positrons with same scintillation yield, produce less Cherenkov light due to **annihilation gammas** \rightarrow **clear distinction** from electrons
- **Cherenkov-to-scintillation ratio** (CS-ratio) → particle discrimination
- Different particles form distinct populations in CS-ratio space

Kr-85

- Mie scattering \rightarrow confine light near its creation point
- **Reduces scattering length** to few millimeters
- Opacity is achieved by adding wax to the scintillator
- **Topology** read out with optical fibers
 - sample ** Event topology depends on the particle
 - Electrons: Create a short ionization trail → single blob
 - Gammas: Undergo multiple Compton scatters → multiple blobs

ransparent

• **Positrons: Combination** of electron like blobs and two gamma scatters

Combined Double Beta Plus Detector

- Neutrinoless Double beta Plus Plus detector → NI IDC
- Combined hybrid and opaque scintillator technologies • event reconstruction and strong particle discrimination

OWL fibers

Optimised **W**aveLength-shifting (OWL) fibers \rightarrow optical fibers with high **photon** capture rate

- especially good for **beta plus signatures**
- Primary goal is the search for neutrinoless double beta **plus** decay
- Also suitable for other **background-sensitive** experiments
- **Krypton-78** as the double beta decay isotope
- First observation of standard double beta plus decay
- Setting new limits on the neutrinoless mode
- NuDoubt⁺⁺ detector consists of:
 - Active **target volume** (1) in the center \rightarrow hybrid opaque scintillator, loaded with krypton-78
 - Inner detector (2)
 - \rightarrow hybrid opaque scintillator but without Krypton
 - Wavelength-shifting optical fibers (3) through target and inner vessel \rightarrow read out by **SiPMs** (4)
 - Outer veto layer (5)
 - \rightarrow transparent scintillator volume with **PMT** (6) readout

Simulated trapping efficiency along the fiber radius for polystyrene fibers with contact to air or NoWaSH (Wax) *

High-Pressure Scintillator Test Cell

- Scintillator loading with krypton tested with dedicated test cell (0.5 L)
- Possibility to measure:
 - **Pressure-dependent loading** factor up to 5 bar overpressure
 - **Transparency** of loaded scintillators
- Krypton gas is **bubbled** through the scintillator at controlled pressure
- Loading factor is measured using single beta decay of **krypton-85**
- Two 2-inch PMTs detect scintillation light via UV-transparent windows on opposite sides of the cell

NuDoubt⁺⁺ Sensitivity

- 34 known $\beta^+\beta^+$ isotopes but only few have high enough Q-values \rightarrow above 2.6 MeV Thallium-208 background
- Krypton-78 is a promising candidate but 0.4% natural abundance
- Increase number of Kr-78 atoms:

- Isotope **enrichment** up to 50%
- Pressure loading up to 5 bar to increase how much gas can be dissolved \rightarrow Henry's law
- NuDoubt sensitivity study shows the half-life limits based on:
 - Detector mass and runtime \rightarrow slanted lines
 - Enrichment and overpressure \rightarrow vertical lines and linestyle
- Half-life expectation for the normal $EC\beta^+$ mode \rightarrow horizontal dashed line
- NuDoubt⁺⁺ prototype 🔆
- double beta decay for a NuDoubt⁺⁺ style detector *

- Additional **PTFE inserts** improve light collection properties by altering shape and reflectivity
- Kr-85 isotope **not naturally occurring**, produced near nuclear power plants \rightarrow Abundance depends on the source of extraction

Cut view scheme of the test cell

- Calibration with ultra low background proportional counters in collaboration with the MPIK for Nuclear Physics
 - Optimized for radon contamination in xenon
 - For krypton activity measurement

→ mixture of krypton-xenon-methane combining energy calibration from xenon and actual krypton activity measurement

Sketch of the miniaturized ultra-low background proportional counter ***

Sources:

- Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays, M. Böhles et al., 2024
- ** Novel Opaque Scintillator for Neutrino DetectionC. Buck et al., 2019
- *** Detection of 133Xe from the Fukushima nuclear power plant in the upper troposphere above Germany, Hardy Simgen et al, 2014