

ALICE Forward Calorimeter Physics Program and Expected Performance

Shihai Jia for the ALICE Collaboration

2025 European Physical Society Conference on High Energy Physics

ALICE FoCal upgrade

FoCal is an upgrade of the ALICE experiment at the LHC, to be installed during Long Shutdown 3 for data-taking in Run 4.

Publications and public notes:

FoCal LOI:	CERN-LHCC-2020-009
FoCal TDR:	CERN-LHCC-2024-004

Physics of FoCal: <u>ALICE-PUBLIC-2023-001</u> Physics performance: <u>ALICE-PUBLIC-2023-004</u> Pixel layer performance: <u>arXiv:2504.03018</u> FoCal beam test: <u>arXiv:2311.07413</u> 07.07.2025

FoCal-H

FoCal-E – electromagnetic part:

- A tungsten-silicon calorimeter
- **18 pad layers** (1 cm x 1 cm)
- **Photons, electrons,** *π*⁰, ... 09.07.2025

- 2 high-granularity pixel layers
 - \sim 30 μ m x 30 μ m pixels
 - on the 5th and 10th layer

FoCal-H – hadronic part:

- A copper-scintillator calorimeter:
- Upcoming new prototype with copper sheets and scintillating fibers
- Photon isolation
- Jet measurements

Shihai Jia

- FoCal extends ALICE's reach to forward rapidity (3. 2 < η < 5. 8), enabling precision direct photon measurements at small-x, and unlocking novel studies of QCD dynamics in hadronic and ultra-peripheral collisions down to $x \sim 10^{-6}$.
- Main observables include **prompt photons**, jets, neutral mesons, J/ψ , gamma-hadron correlations

- Prompt photon directly produced in $qg \rightarrow \gamma q$ is a **direct probe** of the gluon PDF, with no final-state effects.
- FoCal pseudo data shows a $\sim 50\%$ reduction in the nPDF uncertainty.

Physics program – prompt photons

Ë

Invariant Mass

- π^0 decay photons have a clear peak on cluster pairs invariant mass.
- Applying a cut $(0.07 0.18 \text{ GeV}/c^2)$ significantly improves the signal-tobackground ratio.

Shower Shape

Clusters from the background sample are **elongated** with respect to signal photons

Isolation

Applying an **isolated cone**, only accept photons with no neighboring particles.

- Collinear fragmentation
- Decay photons come with hadronization products

---- isolation no selection

10

12

*p*_{_} (GeV/*c*)

07.07.2025

Jets

- Forward jets, dijets, and γ+jet observables are sensitive to different transverse momentum dependent (TMD) gluon distributions.
- Provide crucial insight into gluon saturation and the nonlinear regime of QCD at small-*x*.
- Q_{sat} can be probed using the **momentum imbalance** k_{T} $k_T = |\mathbf{p}_{T,1} + \mathbf{p}_{T,2}| \approx p_{T,1} \sin(\Delta \varphi)$

Neutral Mesons

- Simulation studies have been carried out for meson measurements.
- FoCal-E pixels give high reconstruction efficiency and provide good spatial separation.

FoCal beam test setup

FoCal beam test campaigns

FoCal-E development

07.07.2025

unit: µm

FoCal-H development

Prototype 1

- One module
- 9.5 cm x 9.5 cm x 50 cm
- Scintillating fibers + Capillary tubes
- 30 fibers bundled into one readout channel

Prototype 2

- 9 modules
- 6.5 cm x 6.5 cm x 110 cm per module
- 49 SiPMs for central module
- 25 SiPMs for each outer module
- Tested in 2023 and 2024

Prototype 3

FoCal-H prototype 3 is being manufactured, and is planned to be tested in the beam in 2025

- Scintillating fibers + Copper sheets
- Simulation shows better performance

FoCal readout

data rate

65-320 Gbps

110-170 Gbps

519-834 Gbps

344 Gbps

- All FoCal sub-detectors will be read out using the **standard ALICE readout** chain.
- A total of 19 CRUs are foreseen, supporting an overall input data rate up to 830 Gbps.
- Data is processed by the FLPs and EPN farm using the ALICE O² infrastructure.

FoCal-E pixel layers

FoCal-H (non-zero supp.)

FoCal-E pad layers

Total

of CRUs per CRU

7

10

2

19

10-50 Gbps

11–17 Gbps

175 Gbps

FoCal-E pads performance

FoCal-E pixels performance

- The **electron shower profile** from beam test data matches the simulation.
- In the N_{Hits} correlation between the two pixel layers, the regimes of oneelectron, two-electron, and three-electron events can be clearly identified.
- Increasing the back bias voltage can reduce the mean cluster size, therefore reducing the **pixel occupancy.**

Shihai Jia

FoCal-H performance

- The energy resolution is evaluated:
 - $\sigma_{\text{stoch.}} = (148 \pm 2_{\text{stat}} \pm 22_{\text{syst}})\%$
 - $\sigma_{\text{const}} = (10.0 \pm 0.13_{\text{stat}} \pm 0.7_{\text{syst}})\%$
 - Meets the requirements in the LOI (25% @ 100 GeV, 11% constant term)
- The nonlinearity is within 2% from 60 350 GeV

Shihai Jia

- The ALICE FoCal project has a unique capability to study nonlinear QCD at **small-x**. It will be a powerful tool for exploring gluon distribution in Run 4.
- FoCal-E pixels, FoCal-E pads, and FoCal-H have undergone multiple beam test campaigns, and all sub-systems **demonstrate the required performance**.

Status

- Several **beam tests** at CERN are planned in 2025 to further study new detector and readout electronics prototypes.
- The mechanical and cooling design is progressing rapidly, and the collaboration is evaluating options for assembly and large-scale production.
- The final FoCal detector will be **fully characterized by 2028 and installed in July 2028**.

- 72 readout channels
- Interfaces:
 - (out) 2x data links
 - (out) 4x trigger links
 - (in) fast commands
 - (io) slow control
- Measurements:
 - ADC for 'low range' energy
 - ToT (time-over-threshold) for
 'high range' energy
 - ToA (time-of-arrival) for timing
- Current conveyor (CC) for SiPM operation

Back-end data flow

In ALICE FoCal, the data flow from/to H2GCROCs is done via data concentration ASICs (IpGBT, ECON-D, ECON-T)

- One lpGBT can aggregate the data lines from 3 H2GCROCs
- Data rate (uplink) is boosted from 1.28 Gbps to 10.24 Gbps
 by lpGBT
- Slow control and fast commands are commonly issued by the downlink (IC-field and D-field in the data frame)

