CMS Silicon Strip Tracker Performance in Run 3

European Physical Society Conference on High Energy Physics

7 – 11 July 2025, Marseille, France

Jindrich Lidrych (Université catholique de Louvain) on behalf of the CMS Collaboration

CMS Tracker detector

- The largest silicon tracker in the world: ~200 m² area, ~135 M channels
- All-silicon design
- Allows for high precision charged particle tracking
- Essential in particle identification, heavy-flavour tagging, trigger decisions, vertex reconstruction
- Comprised of:
 - Pixel detector: barrel (BPix) and forward endcaps (FPix)
 - Strip detector: inner barrel (TIB), outer barrel (TOB), inner disks (TID), end-caps (TEC)

CMS Silicon Strip Tracker

- Active area ~200 m² area, 5.6 m long, 2.5 diameter with 15148 silicon modules, 9.6 M channels
- 10 layers in barrel region (4 inner barrel, 6 outer barrel)
- 3 + 9 disks in the inner disks and endcaps
- Stereo modules (two modules with 100 mrad stereo angle) in 4 layers in barrel and 3 rings in endcap: 2D hits from 1D strips
- 320 μ m "thin" sensors in inner layers (TIB, TID, TEC ring 1-4)
- 500 μ m "thick" sensors in outer layers (TOB, TEC ring 5-7)
- Analog readout
- In operation since Run 1
 - Designed for a total integrated luminosity of 500 fb⁻¹ and a lifetime of at least 10 years

CMS Silicon Strip Tracker & LHC Run 3

Run 3 conditions

- Luminosity delivered to CMS
 - Run 1 + Run 2 is ~192 fb⁻¹
 - Run 3 (till June 2025) is ~220 fb⁻¹
- Mean number of interactions per bunch crossing > 46
 - ~57 in 2024 vs ~37 in 2017/2028
- CMS is running at L1 trigger rate ~110 kHz

Challenging conditions: radiation damage

- Higher leakage current, less charge collected, reduced resolution, etc.
- → The last three years could represent > 50% of the pp data collected
- → How is the Strip Tracker operated after 15 years?
- → What is Strip performance after 15 years of operation?

Silicon temperature map per module during Run 3

Visible features:

- Uncooled parts:
 TOB + L3, TID –D2, TIB +/-L3, TEC + W1, W3, W5, W9, TIB I 4
- Degraded cooling contacts:
 TIB + L1, TIB + L2
- Grey regions: modules excluded from data-taking

- Detector is currently operated at -25 °C since the LHC technical stop No. 1 in June 2024
 - Detector operated at -22 °C between June 2023 and June 2024

Bad components fraction

Fraction of modules flagged as bad:

- 0.9 1: Full module not in readout
- 0.3 0.9: One or more readout fiber not in readout
- 0.1 0.3: Single readout chip not in readout
- 0 0.1: Small group of strip not in readout

Knowledge of bad components is important for tracking

• Any strip, chip, module, power supply, electronics boards that's misbehaving must be tagged

Evolution of bad components fraction

- · Constantly monitored, and mostly stable
- Fraction of active channels during Run 3 ~96% (similar to Run 2)
- The drop in bad module fraction around 205 fb⁻¹ is due to the recovery of a cooling loop in Endcaps
- Several jumps are due to many modules whose power supplies were turned off

Signal-to-noise ratio

- The overall signal-to-noise ratio, corrected for pathlength inside the silicon, is shown for the end of 2024
- The position of the MPV of the peak is given, estimated from a fit to a Landau convoluted with a Gaussian distribution
- The S/N scales with integrated luminosity
 - As expected, a decrease of S/N is observed with time
 - The predicted S/N at the end of Run 3 exceeds the detector design specification of an S/N value of 10

Hit efficiency

- The hit efficiency is defined as the ratio of detected hits to the number of expected hits belonging to a track.
- Regular measurements with high-quality tracks are made using collision and cosmic data
- The hit efficiency for four TIB layers (left) and five TOB layers (right) as a function of the instantaneous luminosity from a standard fill with luminosity under 2.2·10³⁴ cm⁻²s⁻¹
- The hit efficiency > 0.985 (0.98) for the innermost layer in TIB (TOB)

Hit resolution

 Strip hit resolution is derived by selection pairs of hits in different types of overlapping sensors and for different cluster widths expressed in units of number of strips

- Strip hit resolution is shown for 2024 data
- The theoretically expected resolution from a binary readout tracking detector (i.e., hit or no hit) is also displayed
- By measuring the fraction of charge collected by adjacent strips, the hit position can be interpolated more precisely, leading to a resolution significantly better than the binary limit

Energy loss measurement

- The energy loss is estimated by using events with a good reconstructed primary vertex, tracks passing the high purity selection
- A saturation correction algorithm based on cross-talk inversion is applied to selected clusters to recover highenergy deposits
- The energy loss estimator is computed from the dE/dx of the associated hits in the silicon strip tracker using the harmonic mean of grade k = -2:

$$\frac{dE}{dx} = \left(\frac{1}{N}\sum_{i}(\Delta E/\Delta x)^{k}\right)^{\frac{1}{k}}$$

 The data were fitted on the shown proton and pion band and then extrapolated on the deuteron and kaon bands

Radiation damage projections for the end of Run 3

• The predicted status of the SST after an integrated luminosity of 500 fb⁻¹ and cooled down to -25°C

Leakage current

- Some groups of modules in the TIB L1, L2, L3 show elevated leakage currents of around 2-3mA per module and these could also potentially become inoperable
- The gray areas: the maximum power supply is reached or one or more modules experienced thermal runaways
- The purple regions: lacked appropriate input parameters for the simulation

Radiation damage projections for the end of Run 3

• The predicted status of the SST after and integrated luminosity of 500 fb⁻¹ and cooled down to -25°C

Thermal runaway

- Fraction of modules affected by thermal runaway as a function of the integrated luminosity
- A module is considered to reach thermal runaway if during the iterative simulation the self-heating contribution continues to increase
- Rapid increase above 300 fb⁻¹ and reaches about 1.5% at 500 fb⁻¹

Conclusion

- The LHC is in its last years before its HL-LHC upgrade
 - Significant fraction of pp data still being collected
- CMS Silicon Strip Tracker maintains its outstanding performance
 - Run 3 performance exceeds the original detector design specifications
 - Despite being in operation since Run 1
 - Despite being exposed to radiation damage
- CMS Silicon Strip Tracker is expected to continue delivering high quality tracks until end of Run 3

References:

- [1] CMS Silicon Strip Tracker Performance Results in 2024, CMS-DP-2025-020
- [2] Bad components of the CMS Silicon Strip Tracker with early Run 3 data, CMS-DP-2022-048
- [3] CMS Silicon Strip Tracker Maps, CMS-DP-2023-083

More details about CMS Strip Performance in Run 2 and projections for the end of Run 3: Operation and performance of the CMS silicon strip tracker with proton-proton collisions at the CERN LHC, arXiv:2506.17195, Submitted to the *Journal of Instrumentation*.

Back-up

Energy loss measurement

Energy loss measurement as a function of the track momentum using the Pixel-Less Harmonic-2 estimator. The data were fitted on the shown proton and pion band using the function

$$\frac{dE}{dx} = p_1 \left(\frac{\sqrt{(\beta \gamma)^4 + 4(\beta \gamma)^2} - (\beta \gamma)^2}{2} \right)^{\frac{p_2}{2}} \ln(1 + [p_3 \beta \gamma]^{p_4}) - p_5 \text{ where } p_1, p_2, p_3, p_4 \text{ and } p_5 \text{ are the fit parameters, that was then extrapolated on the deuteron and kaon bands.}$$