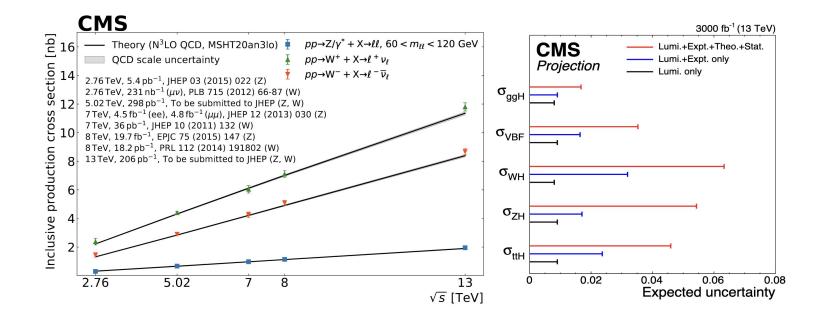
Precision Luminosity Measurements in CMS with Run 2 and Run 3 Data

Peter Major on behalf of the CMS Collaboration

<u>EPS-HEP</u>, Marseille 2025. 07. 08.


What is luminosity, why do we care?

Luminosity

- Is a measure of the accumulated data
- Connects theory and experiment: $\sigma_{\text{process}} L_{\text{int}} = \langle N_{\text{total}} \rangle \rightarrow \text{used in all xsec measurements}$
- Is amongst the leading sources of experimental uncertainties in SM precision measurements

In lepton colliders it is measured using benchmark physics processes like Bhabha-scattering ($\sigma_{process}$ very well known), but hadron colliders pose many challenges on account of the protons being composite particles (non-trivial PDFs) \rightarrow large production cross section uncertainties

Outline

Detectors

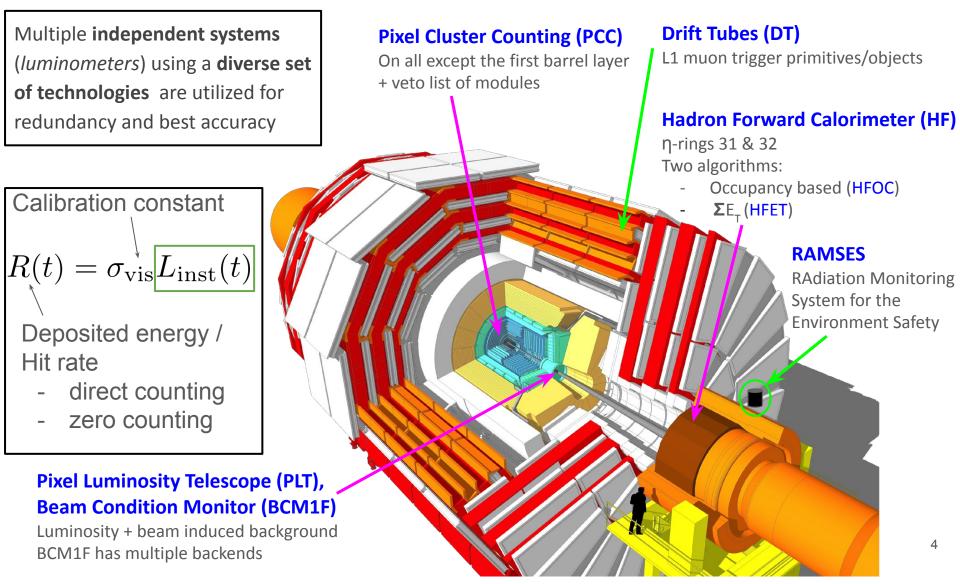
- Redundancy
- Diverse technologies
- Multiple ranges in occupancy

Calibration

- The van der Meer method
- Non-collision background
- Bunch intensity
- Beam-beam interactions
- Beam positions
- Lengthscale calibration
- Non-factorisation
- Emittance scan evolution
- Unknown biases

Integration

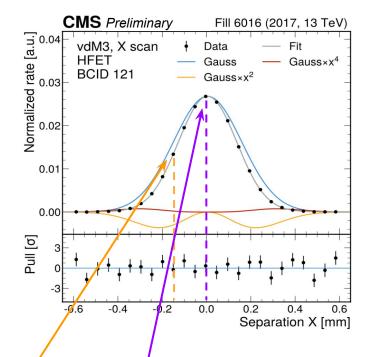
- Out-of-time corrections
- Emittance scans
 - Efficiency tracking
 - Non-linearity
- Residual effects
 - Consistency
 - Linearity
- Average luminosity


Standard candle proxies

- Z boson rate counting
- Muon pair production in ultraperipherial collisions

More general overview available in <u>ICHEP24</u> presentation.

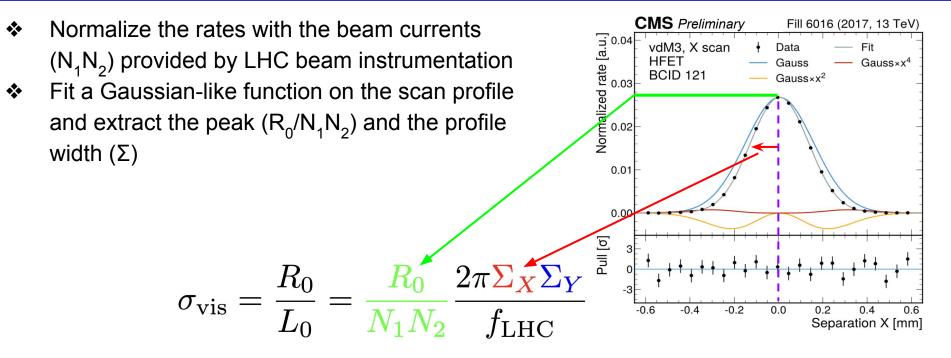
What hardware is used?



Calibration: Establishing absolute luminosity in well controlled conditions

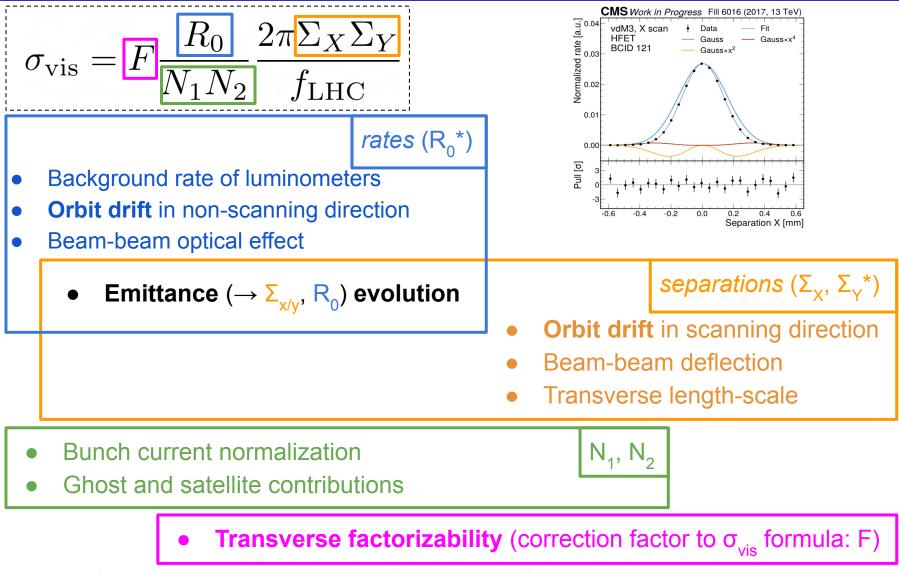
The van der Meer method

BRIL TOTAL TO A REAL AND A REAL A

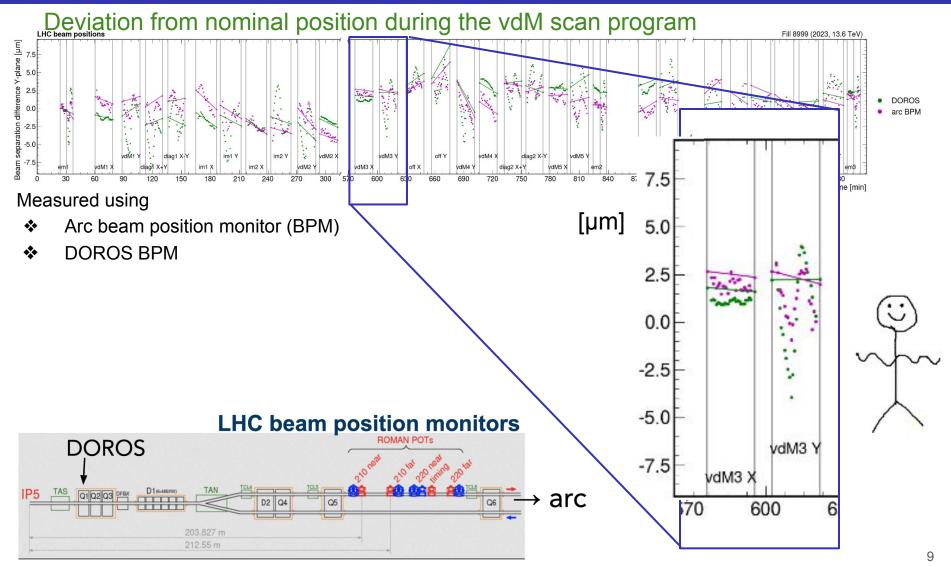

- Highly controlled special conditions:
 - Once a year
 - Wide beams finer relative control
 - Low PU reduced linearity effects
 - Isolated bunches reduced out-of-time
 - Tailored bunch tails in injector chain bunch distributions are approximately *factorisable*
- Perform an X and a Y beam separation scan

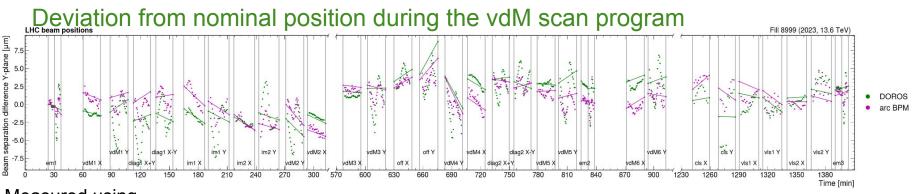


The van der Meer method

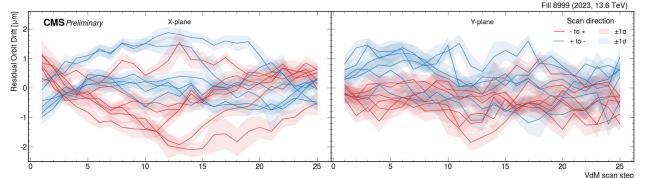


7


Corrections in the vdM procedure


Orbit drift systematics

Orbit drift systematics

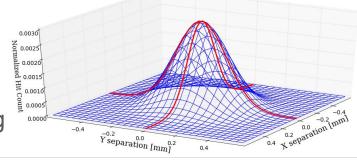

Measured using

- Arc beam position monitor (BPM)
- DOROS BPM

Contributes:

- Slow, linear orbit drift (estimated from before- and after-scan head-on readings)
- Beam-beam deflection (BB) (Bassetti-Erskine formula)
- Residual OD extracted as the residuals of the fit (only scanning plane fit shown):

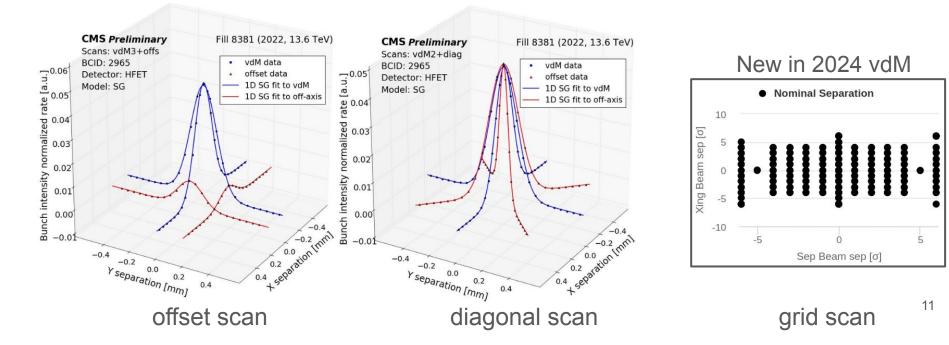
 $\mathsf{BPM}_{x/y} - \mathsf{linOD}_{x/y} = \alpha \times \mathsf{Nominal}_{x/y} + \beta \times \mathsf{BB}_{x/y}(\Delta \mathsf{Nominal}_{x/y}) + \mathsf{c}_{x/y}$



Fitted parameters: Lengthscale (BPM) BB dilution Constant

Typical OD uncertainty in 2022-2023: ~0.2% Large improvement since 2015-16 paper (0.5-0.8%)

Non-factorisation

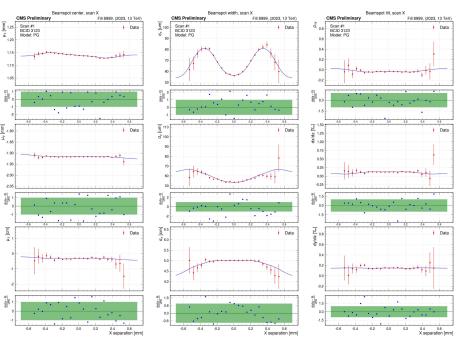


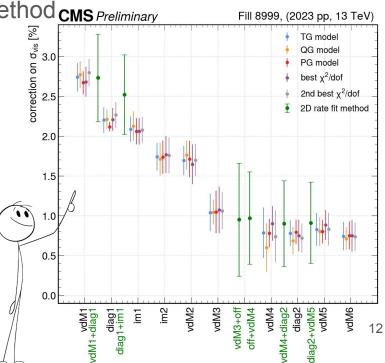
VdM method assumes R(x,y) = f(x)g(y)

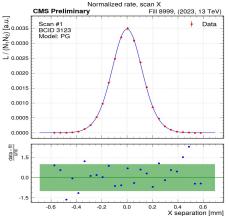
 \rightarrow two scans are enough to get the integral of R(x,y)

2D scans

- Fits the bunch overlap shape directly
- Using complementary scans for off-axis sampling
- All BCIDs are used
- Modelling uncertainty dominates
- Luminous region analysis

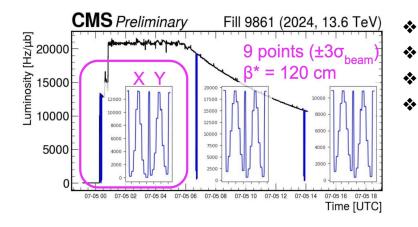


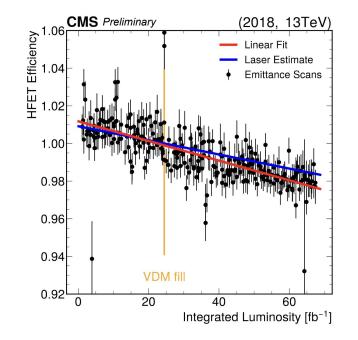

Non-factorisation


two scans are enough to get the integral of R(x,y)

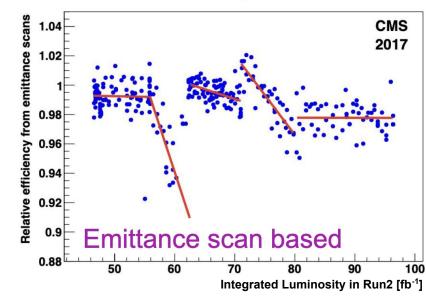
- 2D scans
- Luminous region analysis 쇇
 - Fits the 3D bunch density function for the two beams
 - Using any scans
 - For few BCIDs with high rate vertex data
 - Uncertainty dominated by closure of the method CMS Preliminary

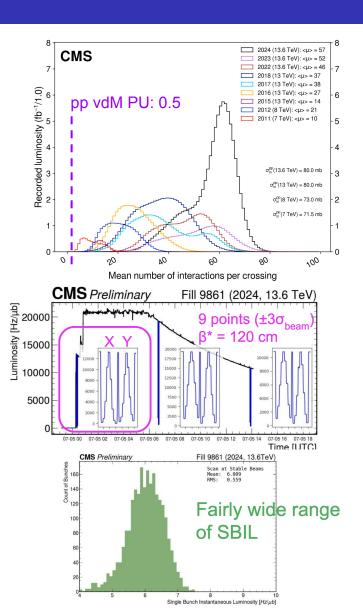
Uncertainty: 2022 (prelim): 0.8% 2023 (prelim): 0.7%

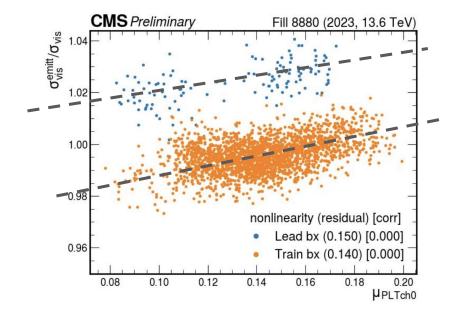




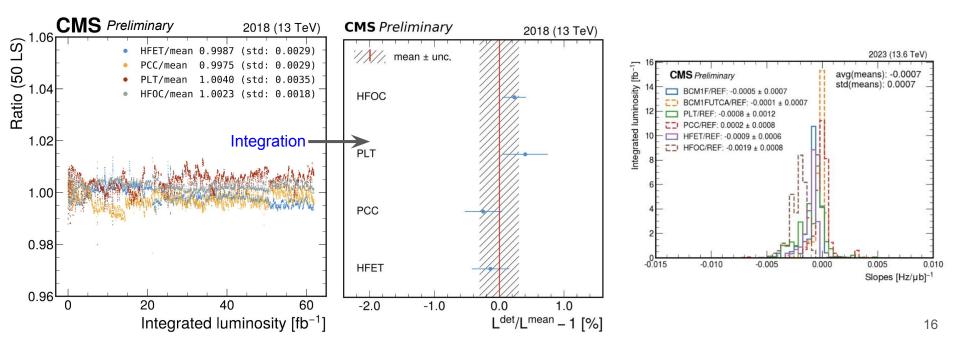
Integration: Measurement in high PU conditions


Rate corrections - Efficiency

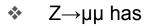

- Aging due to radiation
- Changing conditions (HV, temp, failing modules)
- All detectors potentially affected
 - Intrinsic correction: Emittance scan-based efficiency tracking (per-module for PLT, BCM1F)
 - Good agreement with alternative methods (Laser-based for HF, tracking-based for PLT)

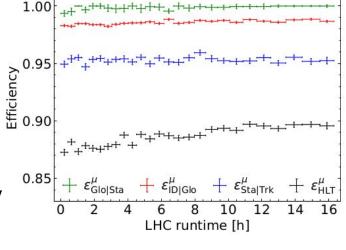

2017 PLT efficiency corrections

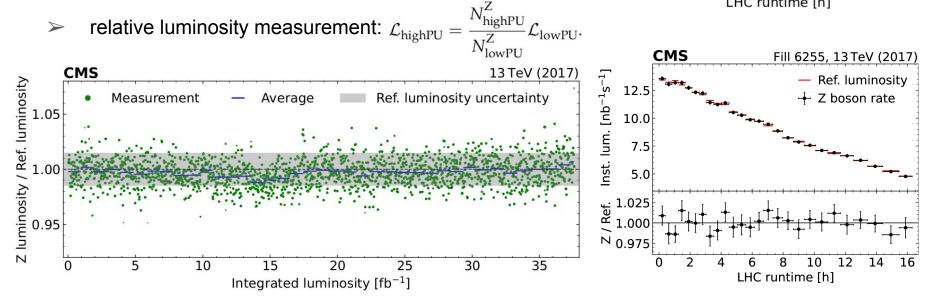
Rate corrections - Nonlinear response


- VdM calibration performed at 1/100 of the datataking pile-up
- Model: $\mu_m = \mu_\ell (1 + \alpha \mu_\ell)$
- Mitigation correction of detectors based on intrinsic quantities:
 - Restrictive module selection based on noise levels and internal consistency (PCC)
 - Efficiency as a function of peak luminosity (SBIL) tracked via emittance-scans (per-module for PLT, BCM1F)

Closure: Consistency, non-linearity


- Previously: Detectors ordered according to their dependability: The best available source provides the luminosity
- Current non-preliminary approach: Several detectors calibrated independently to a similar quality → use the average of the available sources
- Spread of detectors is tracked throughout the whole year
 - Uncertainty derived from the RMS the mean of all histograms
- Residual nonlinearity of the average lumi is evaluated with respect to DT and RAMSES, the more conservative estimate is used


A pp standard candle: Z counting


Fill 6255. 13 TeV (2017)

- a clean signature
- relatively large cross section (not enough for vdM)
- a not-too-well-known fiducial cross section (PDF)
- * Trigger and selection efficiencies are measured in situ every $20/pb \rightarrow$ intrinsic linearity and efficiency correction
- Primary use:
 - common ground for consistency checks at given energy

CMS

See: (Eur. Phys. J. C 84 (2024) 26) ¹⁷

Recent results

- Multiple independent luminometers relying on diverse technologies
- Several corrections applied in calibration and integration new approaches highlighted in table
 - Dominant sources: Factorisation, Integration, Beam-Beam, Orbit drift,
- Uncertainties treated as 100% or 0% correlated between years in combinations (see colors)
- Recent preliminary results approach 1% uncertainty, foreshadowing the upcoming Run2 precision result

Results since 2020	2015	2016	2022 (prelim)	2023	pp ref 2017	PbPb	PbPb
				(prelim)	(prelim)	2015	2018
	EPJ C81 (2021) 800		CMS-PAS- LUM-22-001	CMS-DP-2 024-068	CMS-PAS- LUM-19-001	Submitted to EPJC	
Non collision rate						0.5	0.2
Statistical	_	_	—	_	<0.1	0.1	0.1
Beam current	0.1	0.1	0.2	0.20	0.2	0.2	0.2
Ghost & satellite charges	0.2	0.2	0.2	0.10	0.2	0.3	0.5
Beam-beam effects	0.5	0.5	0.4	0.34	0.8	0.2	0.3
Linear (random) orbit drift	0.2	0.1	0.1	0.02	0.3	0.5	0.1
Residual (systematic) orbit drift	0.8	0.5	0.3	0.16	1.0	0.2	0.2
Length scale	0.2	0.3	0.1	0.20	0.8	0.5	0.5
Factorization bias	0.5	0.5	0.8	0.67	0.8	1.1	1.1
Scan-to-scan			0.5	0.28	0.4	_	0.5
Bunch-to-bunch	0.6	0.3	0.1	0.06	0.4	—	_
VdM consistency			0.4	0.16	0.4	2.5	0.4
Calibration	1.3	1.0	1.2	0.89	1.9	2.9	1.5
OOT (non coll. rate)	0.3	0.4	0.2	_	<0.1	0.1	0.1
Stability	0.6	0.5	0.5	0.71	0.1	0.7	0.8
Linearity	0.5	0.3	0.5	0.59	<0.1	_	-
Integration	1.0	0.7	0.8	0.92	0.1	0.7	0.8
Total	1.6	1.2	1.4	1.28	1.9	3.0	1.7

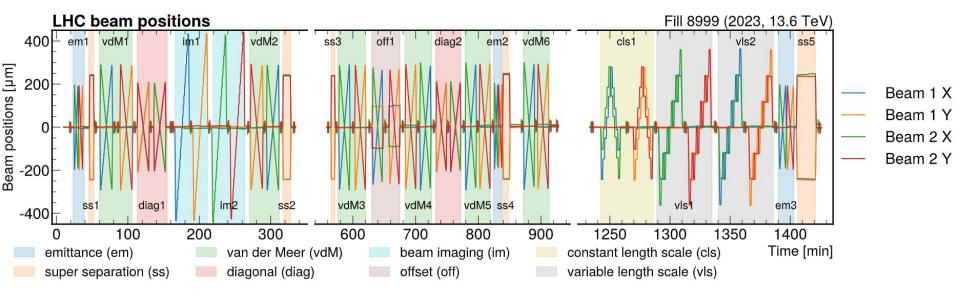
Thank you!

\$1

F

Zero counting

- In certain detectors directly counting individual hits is not feasible either due to resolution or bandwidth / computational limitations, but it is very possible to determine the the lack of a hit (the opposite of any number of hits)
- The hits follow a **Poisson distribution**: $P(n=k) = e^{-\lambda} \lambda^k / k!$
- The probability of zero hits is $P(n=0) = e^{-\lambda}$
- Therefore the mean hit count is $\lambda = -\ln(P(n=0))$
- **\diamond** Zeros are counted over several orbits before $\ln(n_0/n)$ is calculated
- At high pile-up zero-starvation can become a problem, as the logarithm explodes near 0, amplifying the noise of the detector and introducing a bias
- Occupancy measurement via zero counting in PLT, BCM1F*, HFOC


What is σ_{vis} ?

$$\begin{split} \mathsf{L}(\Delta \mathbf{x}, \Delta \mathbf{y}) &= \mathsf{n}_1 \mathsf{n}_2 \mathsf{f}_{\mathsf{LHC}} \int_{\mathbb{R}^2} \mathsf{d} \mathbf{x} \mathsf{d} \mathbf{y} \, \mathsf{b}_1 \Big(\mathbf{x} - \frac{\Delta \mathbf{x}}{2}, \mathbf{y} - \frac{\Delta \mathbf{y}}{2} \Big) \mathsf{b}_2 \Big(\mathbf{x} + \frac{\Delta \mathbf{x}}{2}, \mathbf{y} + \frac{\Delta \mathbf{y}}{2} \Big), \text{ for } \mathsf{b}_1, \mathsf{b}_2 \text{ bunch density functions} \\ \\ \int_{\mathbb{R}^2} \mathsf{d} \Delta \mathbf{x} \mathsf{d} \Delta \mathbf{y} \, \mathsf{L}(\Delta \mathbf{x}, \Delta \mathbf{y}) &= \mathsf{n}_1 \mathsf{n}_2 \mathsf{f}_{\mathsf{LHC}}, \\ \hline \\ \mathsf{f}_{\mathbb{R}^2} \, \mathsf{d} \Delta \mathsf{x} \mathsf{d} \Delta \mathbf{y} \, \mathsf{L}(\Delta \mathbf{x}, \Delta \mathbf{y}) &= \frac{1}{\sigma_{\mathsf{vis}}} \int_{\mathbb{R}^2} \mathsf{d} \Delta \mathsf{x} \mathsf{d} \Delta \mathbf{y} \, \mathsf{R}(\Delta \mathbf{x}, \Delta \mathbf{y}) = \mathsf{n}_1 \mathsf{n}_2 \mathsf{f}_{\mathsf{LHC}}, \\ \hline \\ \mathbf{\sigma}_{\mathsf{vis}} &= \frac{1}{\mathsf{n}_1 \mathsf{n}_2 \mathsf{f}_{\mathsf{LHC}}} \int_{\mathbb{R}^2} \mathsf{d} \Delta \mathsf{x} \mathsf{d} \Delta \mathbf{y} \, \mathsf{R}(\Delta \mathbf{x}, \Delta \mathbf{y}) \\ \exists f, g: R(\Delta x, 0) &= f(\Delta x) g(0) \\ R(\Delta x, 0) &= f(\Delta x) g(0), R(0, \Delta y) = f(0) g(\Delta y) \\ R(\Delta x, \Delta y) &= \frac{R(\Delta x, 0)}{g(0)} \frac{R(0, \Delta y)}{f(0)} = \frac{R(\Delta x, 0) R(0, \Delta y)}{R(0, 0)} \\ \int_{\mathbb{R}^2} R(\Delta x, \Delta y) &= \frac{1}{R(0, 0)} \int_{\mathbb{R}} R(\Delta x, 0) \int_{\mathbb{R}} R(0, \Delta y) \\ \int_{\mathbb{R}} R(\Delta x, 0) &= \sqrt{2\pi} R(0, 0) \Sigma_X \end{split}$$

The van der Meer method

Length scale calibration (LSC)

beam 1 beam 2

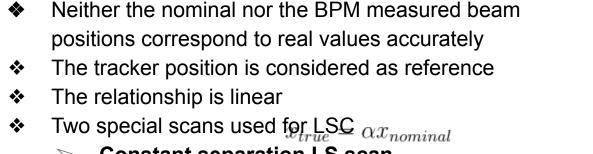
PbPb 2015 (5.02 TeV)

Slope: -0.011 ± 0.001 $\chi^2/d.o.f. = 0.4 / 2$

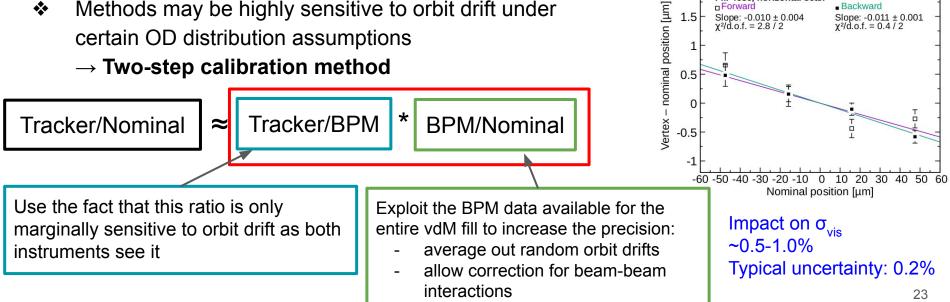
Backward

× beamspot

 1.4σ


CMS Preliminary

- Forward

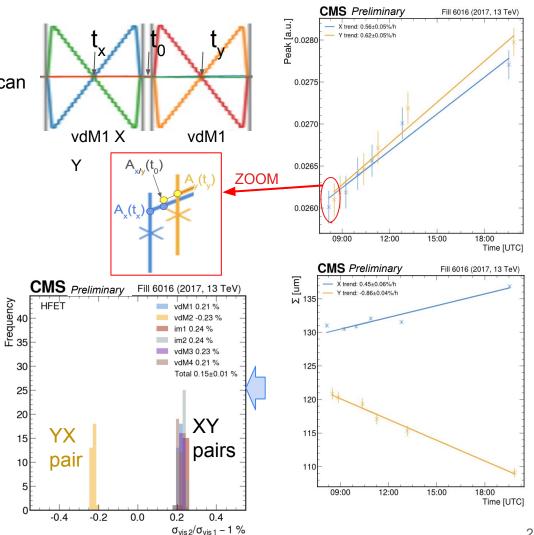

1.5

Fill 4689, horizontal scan

Slope: -0.010 \pm 0.004 χ^2 /d.o.f. = 2.8 / 2

- **Constant separation LS scan** \succ
 - Average LS for B1&B2
- Variable separation LS scan >
 - Separate LS for B1&B2
- Methods may be highly sensitive to orbit drift under * certain OD distribution assumptions
 - \rightarrow Two-step calibration method

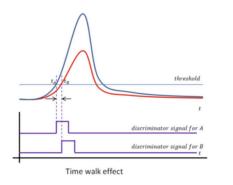
Emittance evolution


Issue:

The vdM profile parameters are constantly changing in time

 \rightarrow the parameters extracted in the X and Y scan are only approximately compatible

$$egin{aligned} \sigma_{vis1} &= 2\pi rac{A_x(t_x) + A_y(t_y)}{2} \Sigma_x(t_x) \Sigma_y(t_y) \ \sigma_{vis2} &= 2\pi rac{A_x(t_0) + A_y(t_0)}{2} \Sigma_x(t_0) \Sigma_y(t_0) \end{aligned}$$


The impact is $\sigma_{vis2}/\sigma_{vis1}$ where the formulas both use the linear interpolation of the vdM parameters to capture the effect of the trend

Rate corrections - Out-of-time

CMS Run: 325170 LS: 51-100 (2018, 13 TeV) Before afterglow subtraction After afterglow subtraction 200

3450

3475

3500

BCID

40

30

20

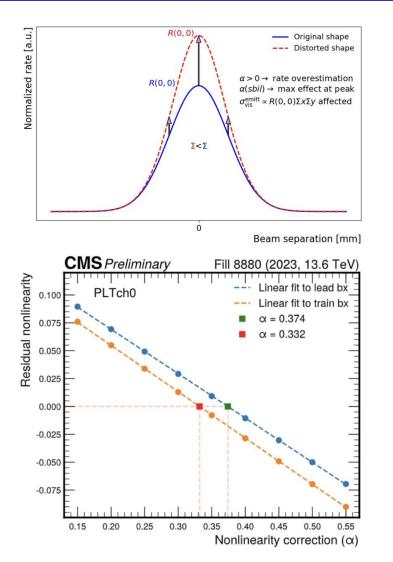
10

3375

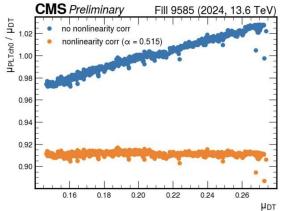
3400

3425

Out-of-time effects:


- Components:
 - > Type I: Signal spillover, Time walk
 - Type II: Material activation
- ✤ Affected: PCC, HFET, HFOC, BCM1F
- Template fit of single-bunch response functions for the two components

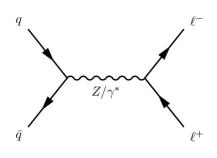
Rate corrections - Nonlinear response


*

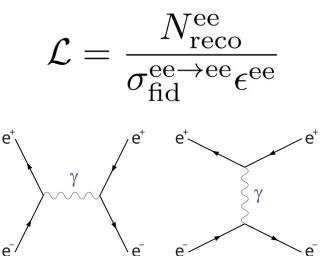
- * VdM calibration performed at 1/100 of the datataking pile-up
 - Model: $\mu_m = \mu_p (1 + \alpha \mu_p)$
- Mitigation correction of detectors based on intrinsic quantities: *
 - Restrictive module selection based on noise levels and \succ internal consistency (PCC)
 - Efficiency as a function of peak luminosity (SBIL) \succ tracked via emittance-scans (per-module for PLT, BCM1F)
 - Efficiency can not be used straightforwardly, as the scan curve is not uniformly distorted by the non-linearity
 - Use the Major-factor mildly profile dependent
 - Iterative- / interpolation-based procedure
- Highly linear detectors with a low occupancy are used as * reference to evaluate residual effects (DT, RAMSES)

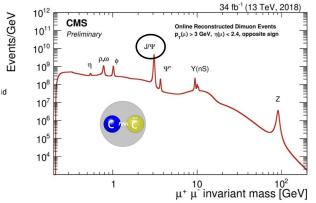
For unc. only! \succ

26


Standard candles: From cross-year consistency checks to the future of precision luminosity

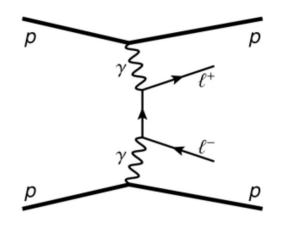
Standard candle concept

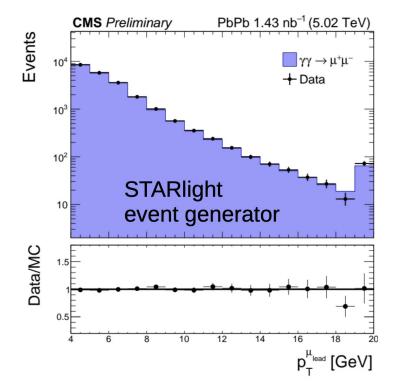

In e⁺e⁻ colliders: forward elastic (Bhabha) scattering


- Well known QED cross section
- Clean signature
- Only detector efficiency needs to be tracked
- LEP: 0.15% uncertainty

In pp collisions:

- $Z \rightarrow \mu \mu$ has
 - > a clean signature
 - relatively large cross section (not enough for vdM)
 - a not-too-well-known fiducial cross section
- ✔→μμ
 - > Much higher rate \rightarrow could be calibrated in vdM
 - Requires prescaled trigger in high PU
 - Low PU muons are difficult to handle
 - > Allows for transfering to $Z \rightarrow \mu \mu$ as well

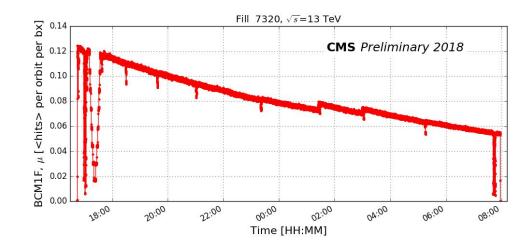


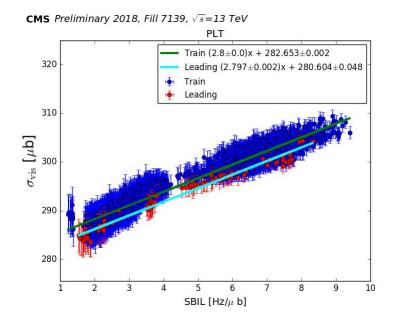


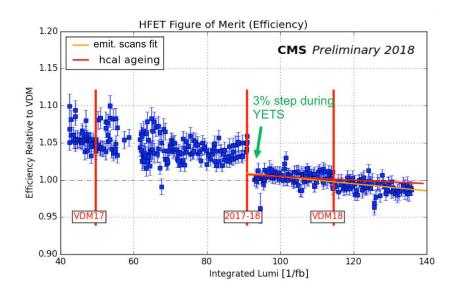
PbPb: Exclusive dimuon production

- * $\gamma\gamma \rightarrow \mu\mu$ in ultraperipherial collisions has
 - > a clean signature
 - well-known QED-based procedure BUT uncertainty from photon flux!
 - normalization to previous calibrations possible
- Publication in approval

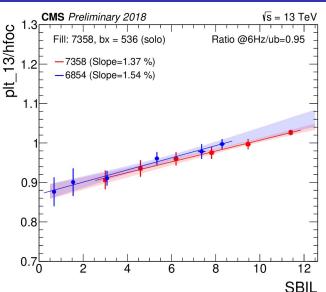
Publications

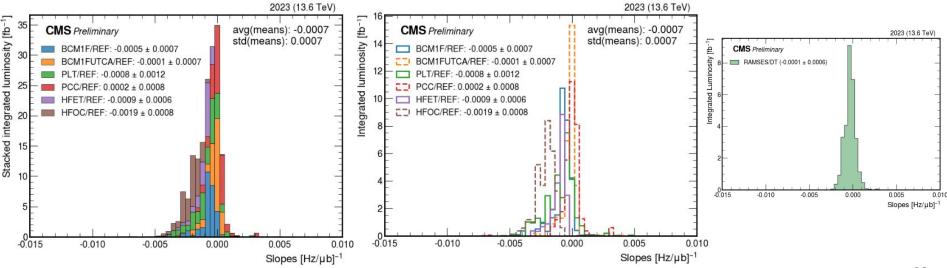

2015	1.6%	Publishe	d naper	
2016	1.2%			
2017	2.3%	<u>prelim</u>	Paper in	
2018	2.5%	<u>prelim</u>	preparation	
2022	1.4%	prelim	Paper in future	
2023	1.28%	prelim	Paper in future	


			-		
Title	Date of approval	Pub			
pp@13 TeV (2015 + 2016)	12 Nov 2020 (public: Apr 2021)	Paper	Available on the CERN CDS information server CMS PAS LUM-22-001 CMS Physics Analysis Summary		
Z counting (2017)	2 Mar 2023 (public: Sep 2023)	Paper	Contact: cms-pog-conveners-lum@cem.ch 2024/03/04		
pp@13 TeV (2017 + 2018) + Run 2 combination	In preparation	Paper	Luminosity measurement in proton-proton collisions at 13.6 TeV in 2022 at CMS		
pp@13.6 TeV (2022)	23 Feb 2024 (public: Mar 2024)	PAS	The CMS Collaboration		
pp@13.6 TeV (2023)	This month	DPS note	The measurement of the integrated luminosity for the proton-proton collisions data- tablen preside at a contra-of mease energy of 13.6 TeV in 2021 with the CMS experiment at the CERS LLE: in specific and the contra-of-the measurement is collibrated from hearn-expansions swith the van der Meer scan method. The pre- cision of the collibration is limited by the knowledge of the factorization of the bunch		
Run 2 (2015+2018) PbPb	In preparation	Paper	proton density during the van der Meer scans. Continuous rate measurements with various CM subdetectors provide a stable and linear luminosity measurement. Considering both calibration and integration sources, the integrated luminosity measurement has a total uncertainty of 14% .		


Emittance scans

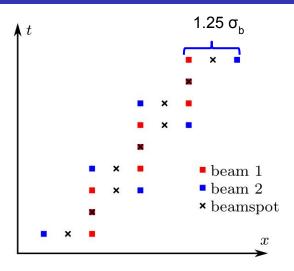
- Luminometers are intrinsically corrected for all linearity affecting effects
- Emittance scans are treated like mini vdM calibrations
- Linearity and efficiency corrections

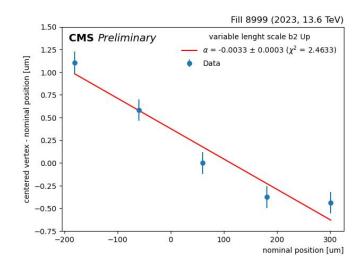




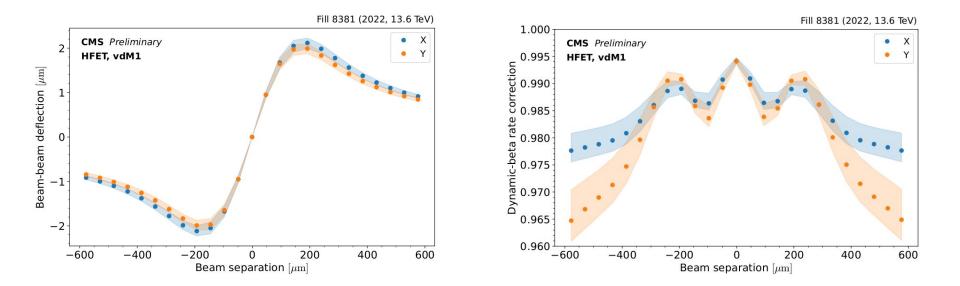
Linearity

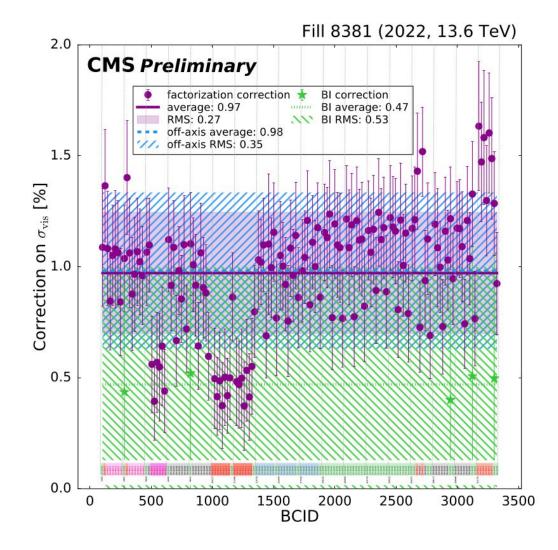
- Luminometers are intrinsically corrected for all linearity affecting effects in situ
 - Data driven out-of-time corrections
 - Linearity from emittance scans
- Residual relative non-linearity is studied with respect to DT and RAMSES
 - Very low occupancy, highly linear detectors



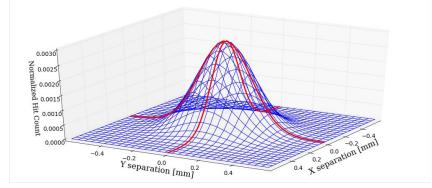


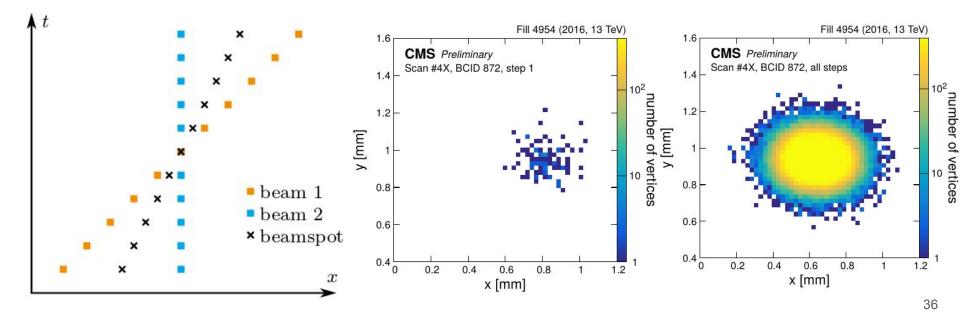
Length scale calibration (LSC)


- Neither the nominal nor the BPM measured beam positions correspond to real values accurately.
- The tracker position is considered as reference
- * The relationship is linear $x_{true} = \alpha x_{nominal}$
- Two special scans used for LSC
 - Constant separation LS scan
 - Average LS for B1&B2
 - Variable separation LS scan
 - Separate LS for B1&B2


Beam-Beam effects

Non-factorisation BCID structure





Non-factorisation

- Imaging scan analysis
 - Fits the 2D bunch density function
 - Using a set of 4 special scans
 - For few BICDs with high rate VTX data

