# Performance and upgrade of the ATLAS Hadronic Tile Calorimeter


## J. Faltova (Charles University) on behalf of the ATLAS Collaboration

### EPS-HEP 2025, 7-11 July 2025

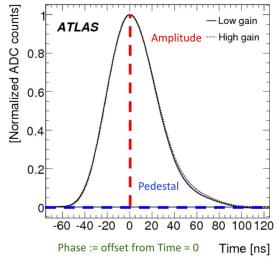


### **ATLAS Tile Calorimeter**

- Tile Calorimeter (TileCal) is a central hadronic calorimeter of ATLAS covering |η|<1.7</li>
- Sampling calorimeter with steel absorber plates and scintillating tiles
- Long barrel and two endcaps divided into four read-out partitions, each composed of 64 modules
- Optical signal from scintillator collected on both sides by wavelength shifting fibers and transmitted to photomultipliers (PMTs)
- Total of **5182 cells** (three radial layers, cell sizes  $\Delta \varphi \propto \Delta \eta \approx 0.1 \times 0.1$ -0.2)

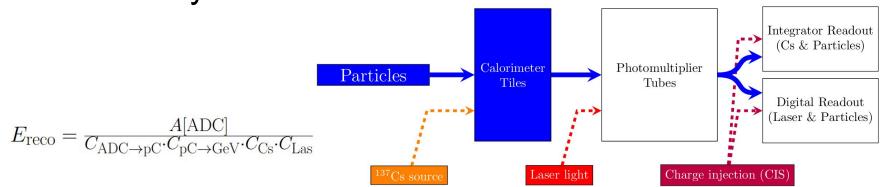


Photomultiplier


### Signal reconstruction

Signal sampled every 25 ns, Optimal Filtering used for reconstruction of the signal amplitude (A) and phase (t)

$$A = \sum_{i=1}^7 a_i S_i, \quad t = rac{1}{A} \sum_{i=1}^7 b_i S_i$$
  $S_i$  : sample *i* readout


Signal amplitude (A) calibrated to the electromagnetic scale ( $E_{reco}$ ) with dedicated calibration systems

$$E_{\rm reco} = \frac{A[\rm ADC]}{C_{\rm ADC \to pC} \cdot C_{\rm pC \to GeV} \cdot C_{\rm Cs} \cdot C_{\rm Las}}$$



### Calibration and performance

### **Calibration systems**



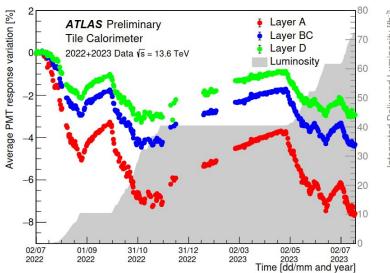
Charge injection (CIS): Monitoring and calibration of the front-end electronics, conversion factor from ADC to pC Eur. Phys. J. C 84 (2024) 1313

Laser: Laser source located 100 m from the detector, monochromatic light delivered to all TileCal PMTs, Monitoring and equalization of the PMT response JINST 18 (2023) 06, P06023

Cesium: Capsule with <sup>137</sup>Cs travels through the TileCal cells, read-out with an integrator chain (10 ms), monitoring of the whole optical chain JINST 15 (2020) P03017

**Minimum Bias currents**: Read-out of the collision events with the integrator chain, calibration of cells not accessible with Cesium (cells in the gap region)

### Calibration systems: Run 3 results (I)


#### CIS

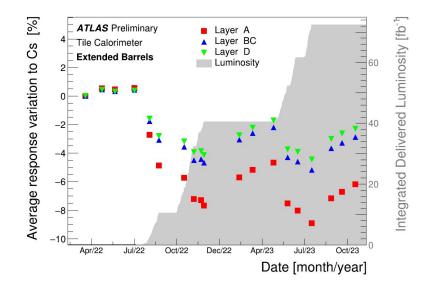
- Very stable response in time
- Precision of 0.7%

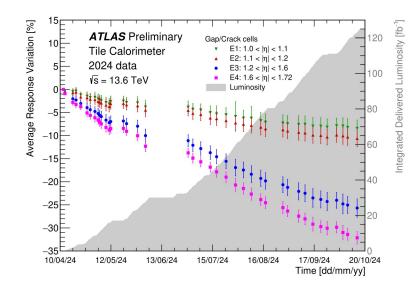
| Calibration [ADC count/pC] | 83.5<br>83<br>82.5<br>82 | ATLAS Preliminary<br>Tile Calorimeter<br>High Gain (HG) ADCs<br>Apr.9 2024-Nov.22 2024 |                        |                |             |
|----------------------------|--------------------------|----------------------------------------------------------------------------------------|------------------------|----------------|-------------|
|                            | 81.5                     |                                                                                        |                        | *******        |             |
|                            | 81                       |                                                                                        |                        | • ********* ** | •• •• ••    |
|                            | 80.5                     |                                                                                        |                        |                |             |
|                            | 80                       | HG Detector Average (RMS/Mean=0.008%) Example Channel LBC25 Ch25 (RMS/Mean=0.013%)     |                        |                |             |
|                            | 79.5                     |                                                                                        | Systematic Uncertainty | ± <b>0.7%</b>  |             |
|                            | 79                       | <br>E                                                                                  |                        | بالمت          |             |
|                            |                          | May<br>2024                                                                            | Jul<br>2024            | Aug<br>2024    | Oct<br>2024 |
|                            |                          | 2024                                                                                   | 2024                   | 2024           | 2024        |

#### Laser

- PMT gain degradation during LHC *pp* collisions
- Precision of 0.5%




### Calibration systems: Run 3 results (II)


#### Cesium

- Response decreases during LHC *pp* collisions
- Precision of 0.3%

#### **Minimum Bias**

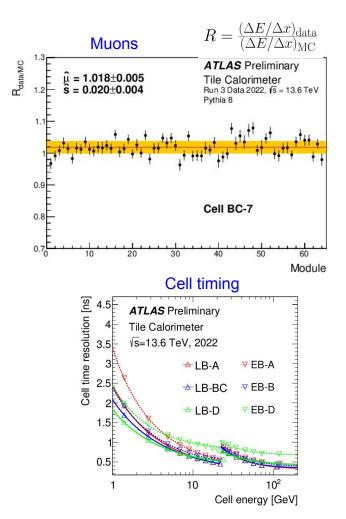
 Large decrease of response for cells in the gap/crack region





### **Performance studies**

Calibration of the detector and uniformity of the response tested with isolated muons originating from  $W \rightarrow \mu v$  decays


• Truncated mean of deposited energy in the cell ( $\Delta E$ ) per path length ( $\Delta x$ ) as an estimator

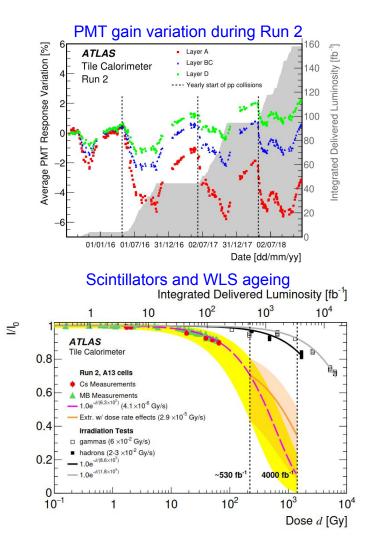
Response to isolated charged hadrons studied using ratio of<br/>energy deposited in TileCal (E) and momentum measured in the<br/>inner detector (p)Eur. Phys. J. C 84 (2024) 1313

• Analysis using *pp* Run 2 data with low pile-up published, Run 3 analysis is ongoing

**Cell time resolution** derived using cells associated to jets from *pp* collisions

• Precision better than 1 ns for energy deposits larger than 4 GeV in most of the cells




### Ageing of the detector

Degradation of the optical components

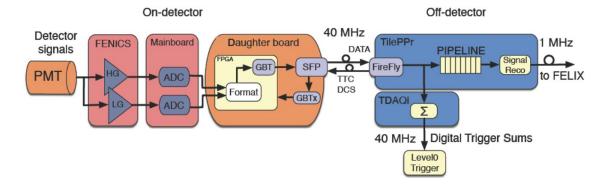
- **PMT gain** decreases with increasing light exposure
- Scintillators and wavelength shifting fibers (WLS) ageing degradation with accumulated dose evaluated by comparing changes in response measured with Cesium and laser
  - Results obtained during Run 2 extrapolated to the end of Run 3 and end of HL-LHC operation

$$I/I_0 = \frac{\Delta R_{\rm Cs}}{\Delta R_{\rm Las}}$$
 NEW: 2025 JINST 20 P06006

• *Note*: Loss of gain is compensated by **adjusting the HV of the PMTs**, individually



### Upgrade for HL-LHC


### TileCal upgrade for HL-LHC

**High-Luminosity LHC (HL-LHC)** will run with instantaneous luminosity 5-7 times larger compared to LHC

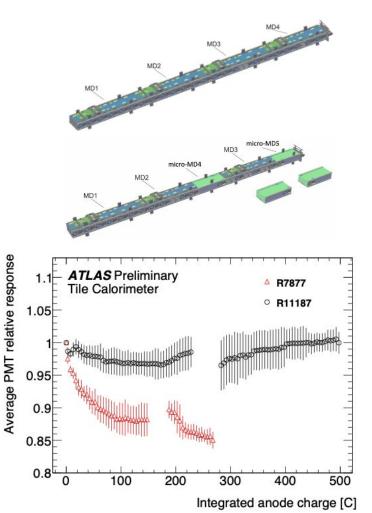
• Challenges: High radiation doses, increased data rates, changes in trigger architecture

#### Main upgrades in TileCal

- Complete replacement of on and off-detector electronics
- 40 MHz read-out, digitization and signal reconstruction
- Improved reliability and maintainability



#### ATLAS-TDR-028


### **Mechanics & PMTs**

#### **Drawers**

- PMTs and on-detector electronics located on so-called "drawers"
- New design with 4 mini-drawers (MD) per module in the long barrel, 3 MDs with 2 micro-drawers in the extended barrel for easier maintenance
- Failure of any component will result in a loss of no more than 6 PMTs

### PMTs and active dividers

- Replacement of most exposed PMTs
- New high voltage active dividers in all PMTs to enhance stability at high anode currents

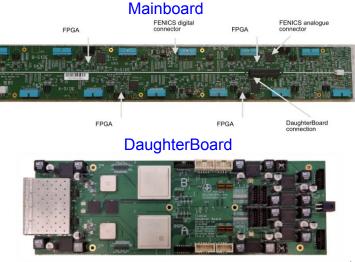


### **On-detector electronics**

### FENICS

- Shaping of the PMT pulse, bi-gain amplification (1:40), charge injection, current integration
- FENICS ADCs with 12 bits (10 bits used in Legacy)


#### Mainboard


- Digitization of FENICS outputs, control for FENICS
- Connection to DaughterBoard

#### **DaughterBoard**

- Send digitised data to the off-detector electronics via optical links
- GBT protocol at 9.6 Gb/s, using SFP+
- Kintex Ultrascale FPGA

#### **FENICS**

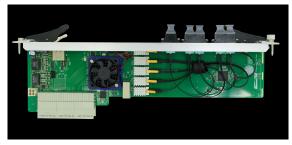




### **Off-detector electronics**

#### **Compact Processing Module (CPM)**

- Transforms the raw data into deposited energy for up to 90 channels at 40 MHz on a Kintex UltraScale (KU115)
- Processes data from 2 modules, connection of modules to Front-end


### Trigger DAQ interface (DAQi)

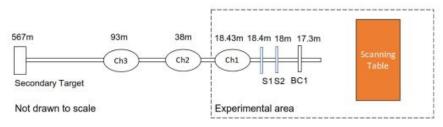
- Receives the cell energies from 4 CPMs synchronously
- Produces primitives for ATLAS Level 0 triggers
- Sends the calorimeter data to the FELIX system

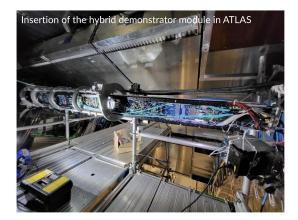
#### Compact Processing Module (CPM)



#### Trigger DAQ interface (DAQi)




### Testing the upgraded electronics


**Prototype with upgraded electronics (demonstrator)** inserted in TileCal long barrel in 2019

- Hybrid mode: Read-out using new digital path, but analog trigger signals provided to the legacy system
- Module fully integrated and collecting data during Run 3

### Regular beam tests at CERN North Area since 2015

- Some of the modules with upgraded electronics, others with legacy
- Beams of electrons, muons and hadrons at various energies and under different directions

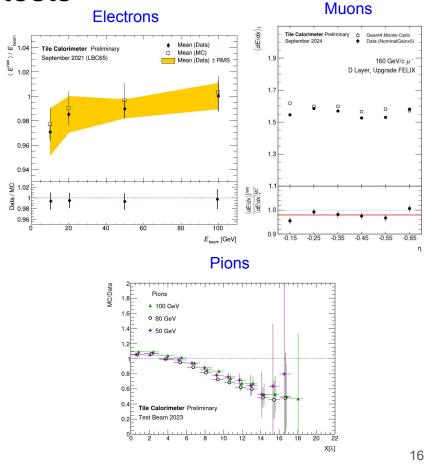






### Selected results from the beam tests

#### Electrons


- Normalised average response as a function of beam energies (10 to 100 GeV)
- Electron beam incident at  $\theta$  = 20° (electromagnetic scale definition)

#### Muons

• Truncated mean of deposited energy per path length as a function of pseudorapidity in individual calorimeter layers

#### Hadrons

- Longitudinal shower profiles for pions and protons
- Geant4 (version 10.6.3) with FTFP\_BERT\_ATL physics list



### Conclusions

### TileCal operates well during LHC Run 3

- Excellent performance of the detector system, less than 1% of cells not usable for physics
- Detector response is regularly calibrated
- Performance studies with Run 3 data ongoing

### Upgrades of the TileCal for HL-LHC processing well in time

- Demonstrator prototype operating successfully during LHC Run 3
- Beam tests confirmed good performance of the upgraded electronics, good agreement between data and Monte Carlo