

<u>Federica Borgato</u> on behalf of the LHCb RICH Collaboration EPS-HEP 2025 Conference 11th July 2025

Charged Hadron identification with the LHCb RICH sub-detectors

- studies.
- to discriminate decays that have the same topology.

• This is fundamental to suppress leading order decay modes and efficiently select Cabibbo suppressed decays to perform rare decay and CP violation studies

- Efficient combinatorial background rejection used by all LHCb analyses.
- More details on <u>Giovanni's talk</u>

• Charged hadron identification (PID) is a crucial component of the LHCb experiment, in particular for flavor physics

• The RICH sub-detectors provide such essential PID capabilities in a wide momentum range \sim [3,100] GeV/c, allowing

RICH detectors performance

estimating the number of standard deviations n_{σ} that separates them:

$$n_{\sigma} = \frac{\Delta \theta_{c}}{\Delta \theta_{c,res}} = \frac{|m_{K}^{2} - m_{\pi}^{2}|}{2p^{2}\Delta \theta_{c,res} tan(\theta_{c})}$$

• For a single track, two mass hypotheses (e.g. π and K) can be separated using the measured Cherenkov angle by

where
$$\Delta \theta_{c,res} = \frac{\sigma_c}{\sqrt{N_{ph}}} + C_{tracking,alignment,..}$$

• The RICH detectors performance is intrinsically driven by: ^o Cherenkov angle resolution σ_c :

- Emission point error
- Pixel size error
- Chromatic uncertainty
- Detected Cherenkov photon per track N_{ph}
- Contribution from tracking system (to estimate p and tracks) trajectories)

The LHCb RICH Upgrade: present and past detectors

- composed by spherical and flat mirrors.
- LHCb detector acceptance.

• There are two RICH detectors, both composed by a gas enclosure containing the radiator and an optical system

• The optoelectronic chain is composed by position sensitive sensors with the relative electronics, placed outside the

RICH during LHC Run 1-2	RICH Upgrade (LHC Ru
Hybrid Photon Detectors (HPDs)	Multi-Anode Photomultipliers (M
1MHz readout front-end encapsulated with the HPDs	New Front-End (FE) Electron featuring the <u>CLARO8 ASI</u> New DAQ system
	New optical system for RIC

The LHCb RICH Upgrade

- After Run 1/2, LHCb experiment's precision on key flavor physics observables were still statistically limited.
 - Main limitation with the upgraded luminosity: maximum allowed output rate of the first trigger stage (L0), implemented in hardware.
 - Optimal strategy: implementation of a full-software trigger that discriminates signal channels based on complete event reconstruction.

- Active area of the order of 80% and spatial granularity O(10 mm^2)
- appropriate gain and quantum efficiency
 - $^{\circ}$ Gain higher than 10⁶ e⁻
 - Quantum efficiency of the order of 40% at 300 nm thanks to the ultra bi-alkali photocathodes
- low dark count rate (O(kHz/cm²))

Single-photon detection at the 40 MHz LHC bunch crossing rate achieved with CLARO asic

To magnify the ring and spread photons over a larger area • Peak occupancy under 30% in order to maintain the PID performance

New trigger strategy, higher luminosity alongside a full revision of the software and data processing

F. Borgato

since the start of Run 3

Upgraded RICH detectors

Calibration and monitoring of the photo-detection chain

- Several calibration procedures have been followed in order to ensure the best detector performance:
 - **Background studies**:
 - 1.2 Me PDM average gain

 - Gain monitoring via threshold scans 0

EPS-HEP2025

- Gain of 200k MAPMTs channels have been extracted: analysis of the integrated charge spectrum acquired with the threshold scan datasets
- The dependance of gain on the HV setting has been studied:
 - o possibility to choose a target gain and fine tune the HV settings to make the sensors response uniform across the photo-detection planes
 - margin to adjust HV setting in order to avoid future ageing

EPS-HEP2025

MAPMTs ageing monitoring

Ageing on the MAPMTs is expected at two levels:

- <u>ageing of the photocathode</u>, causing loss of quantum efficiency.
- <u>ageing of the multiplication chain</u>, causing a loss of gain
 - Gain monitoring is thus needed to check on the ageing of the photo-sensors
 - Threshold scan datasets have been acquired several time across the LHC Run 3 data taking year.

The gain dependence on HV has been measured recently and compared to the same value at the end of 2023:

- A decrease of gain of $\sim 5\%$ is observed
- Such variations are well within the relative uncertainties as expected

EPS-HEP2025

- - Fine time alignment:

the minimum: 6.25 ns gating window

EPS-HEP2025

Time alignment

Occupancy in real data

• To achieve the desired performance, the detector was designed to work up to 30% occupancy

• In real data: peak occupancy around 30% per physics event at nominal pile-up (5.5) as by design

Cherenkov angle resolution and online monitoring

- Single photon Cherenkov angle resolution is one of the main figure of merit to evaluate the RICH performance:
 - It is reconstructed via an online monitoring task selecting high momentum tracks
 - It allows to perform refractive index calibrations as well (cos $\theta_c \sim 1/n$)
 - It is dependent on the software spatial alignment (mirrors and panels)

The online monitoring provides estimation for: Single Photon Cherenkov angle resolution post-reconstruction photon yield per track • Experiment control system variables

PID performance: calibration samples

- PID performance of the RICH detectors depends on the single photon resolution, number of detected photons per track, operational stability and calibrations.
- Calibration samples are exploited to assess the PID performance estimating the efficiency and mis-ID efficiency by varying the PID cut on high level variables:
 - $D^{*+} \rightarrow D^0(\rightarrow K^- \pi^+) \pi_s^+$ for pions and kaons discrimination
 - $\Lambda^0 \rightarrow p\pi^-$ for pions and protons discrimination
- Selection on such samples is based on kinematics requirements only.

EPS-HEP2025

PID performance: Run 2 vs Run 3

- observe that the excellent PID performance of Run 2 is retained and outperformed.

• The PID performance has been fully characterized in bin of momentum, pseudorapidity of the tracks and occupancy.

• In particular, comparing high-pile up events in Run 3 (pile-up \sim 5.5) with Run 2 values (pile-up \sim 1), it possible to

PID performance with 2024 data

- PID efficiency and misidentification rate as a function of the momentum: Loose PID selection: high signal efficiency
 - Tight PID selection: high background rejection
- Dependence on the number of primary vertices per event N_{PV} : $^{\circ}$ lower N_{PV} values imply a better PID performance

EPS-HEP2025

F. Borgato

PID selection on Run 3 data

Run 3 LHCb analysis regarding the $B^0 \rightarrow h^+h^-$ decays:

EPS-HEP2025

• The effect of the PID selection from the upgraded RICH sub-detectors can be observed in this example from the

- The LHCb detectors have been operating smoothly since the start of Run 3.
- Accurate calibration procedures allow to fully exploit the detectors potential.
- The PID performance outperformed the one available during Run 1 and Run 2:
 - Unmatched PID discrimination power for the LHCb analysis

Conclusions

<u>Federica Borgato</u> on behalf of the LHCb RICH Collaboration EPS-HEP 2025 Conference 11th July 2025

stituto Nazionale di Fisica Nuclear Sezione di Padova

The Photon Detection Module

- Front-end digital board:
 - Capture CLARO outputs
 - Synchronize to LHC clock
 - Data algorithm, format, transmission

 PDMDB: motherboard with FPGAs and power distribution • Plugins for control and data transmission, DTM and TCM

• Elementary Cells + PDMDB form the logical unit called Photon Detector Module (PDM) Share common LV and HV distribution

RICH reconstruction

RICH detector hits:

- Event decoding
- Photon hits

<u>Tracks:</u>

- Track radiator trajectories
- Ray traced Cherenkov cones
- Expected Cherenkov angles
- Expected Cherenkov resolutions

Cherenkov photon candidates:

- Reconstruction from photon hits and tracks
- Predicted likelihood distribution for each pixel

PID likelihood minimization:

Computes likelihood values for each track and hypothesis
Results of PID quoted as *DLL*(*h* − *π*) = Δ*logL*(*h* − *π*) with *h* ∈ [*π*, *K*, *p*], assuming *π* as baseline hypothesis

