

Construction status and performance evaluation of the Straw-Tube Tracker for the COMET experiment

<u>Masaaki Higashide¹</u>, Kazuki Ueno², Kou Oishi³, Junichi Suzuki³, Hajime Nishiguchi³, Satoshi Mihara³, and the COMET collaboration.

SOKENDAI¹, Osaka Univ. Phys.², KEK IPNS³

07-11 July, 2025

Muon-to-Electron Conversion

COMET Experiment

COherent Muon to Electron Transition

Searching for μ -e conversion at J-PARC (Japan Proton Accelerator Research Complex).

Use a world-class intensity pulsed muon beam from the COMET beamline.

Two staged plan : Phase-I and Phase-II

StrECAL

Straw-Tube Tracker

- ★ Measuring the e⁻ momentum
- \star Ar : C₂H₆ = 50 : 50
- * 2,400 sense wires
- * Momentum resolution < 200 keV/c

ECAL (Electromagnetic Calorimetor)

- ★ Measuring the e⁻ energy
- * Particle identification
- * Generate trigger
- $\star \sim 2000$ LYSO crystal scintillators

Straw-Tube Tracker

Electronics

Read Out Electronics of Straw Tube Instruments

ROESTIs Integration and Cooling

to implement a cooling system ...

ROESTIs Integration and Cooling

★ Enhance cooling efficiency by increasing the gas flow rate

8

Full-Scale Prototype

Same straw, same dimensions prototype
 * ROESTI was implemented

It had been operated in a 50-300 MeV/c electron test beam at Tohoku University (Japan).

Requirement

Spatial Resolution < 200 μm

 \Rightarrow ~110 µm was achieved !

We started to construct the final model stations going to be used in the COMET.

9

Production of the straws

- Straight-adhesion type can achieve extremely thin wall.
 - \Leftrightarrow Difficult to keep true circle...
- ⇒ Enabled by ultra-sonic welding technique (by JINR-NA62) !
- JINR-COMET group succeeded to produce 20 μm-thick straw which is thinner than NA62.

Pre-tensioning of the straw tubes

COMET employed

Double-wound type

07-11 July, 2025

EPS-HEP 2025

Masaaki Higashide, SOKENDAI, Japan

Production of the straws

- Straight-adhesion type can achieve extremely thin wall.
 - \Leftrightarrow Difficult to keep true circle...
- \Rightarrow Enabled by ultra-sonic welding technique (by JINR-NA62) !
- JINR-COMET group succeeded to produce 20 μm-thick straw which is thinner than NA62.

Installation of the sense wires

COMET employed

Straight-adhesion type

Double-wound type

Construction of the 1st , 2nd and 3rd stations are completed !

1st station

2nd station

3rd station

4th and 5th stations are going to be constructed in JFY2025-2026.

Construction of the 1st, 2nd and 3rd stations are completed!

Read-out system is implemented.

4th and 5th stations are going to be constructed in JFY2025-2026.

Standalone evaluation of the ROESTIs

We evaluated the performance of the 30 ROESTI boards for the 1st station.

All of the ROESTI for the 1st station met required performance.

14

Implementation of the readout system

The readout system has been implemented in the 1st station.

15

Operation check of the 1st station

Signal read-out

- We check the signal read-out with checking source
 - ⇒ We confirmed that the signal read-out system is operating correctly.

🗣 Gain

- We Evaluated the gas amplification factor at each applied HV (1750-2000 V).
- ⁵⁵Fe (X-ray) source was used.
 - \Rightarrow We confirmed over 10⁴ gain @ >1750 V.

The first signal by the 1st station

Gain curve 10⁵ 10⁴ 10⁴ 10⁴ 1750 1800 1850 1900 1950 2000 HV input (V)

Commissioning

We operated the 1st station in the COMET beam commissioning (Phase- α)

In addition to achieving successful signal readout, we identified issues to **improve**.

Improvements

In particular, the noise issue needed to be resolved.

Manifold space is limited.

We reviewed and modified,

- Cabling layout.
- Cable designs.
- Grounding condition.

Improvements

⇒ As a result of modifications, we successfully eliminated the baseline noise that had been observed in the 1st station.

19

Improvements

⇒ As a result of modifications, we successfully eliminated the baseline noise that had been observed in the 1st station.

NEAR FUTURE WORK The spatial resolution of the 1st station is going to be evaluated using this optimized data taking system.

Noiselevel : 1.2 mV

After

07-11 July, 2025

Summary

COMET experiment

* We are going to search μ-e conversion which is one of the cLFV process.
* We are aiming for 10,000x better sensitivity over the current limit.

Straw-Tube Tracker

* The detector for the momentum measurement in the COMET.

* Very low-mass designed and going to be used in vacuum to suppress the scatterings.

- Full-scale prototype

* We made a same scale prototype, but fewer straw.

* With a beam test, we confirmed that the straw-tube tracker can perform as it designed.

- Construction

* Construction of the 3/5 stations are completed, and all station is going to be constructed within JFY2025-26

* The read-out electronics (ROESTI) was developed by us. 30 ROESTI boards for the 1st station was evaluated its basic performance and met the requirement.

- Commissioning & Improvements

* We successfully obtained the first signal from COMET beamline using the 1st station, and we got feedbacks

* The noises were eliminated by improvement. The spatial resolution of the 1st station is going to be evaluated.

StrECAL in the COMET Phase-I&II

ROESTI : Daisy Chain

Conventional Connection

Detector solenoid

Daisy Chain Connection

Gas, Cooling and Vacuum Systems

ROESTI : Time resolution evaluation

ROESTI : Time resolution evaluation (con'd)

<u>Timing calibration</u> \leftarrow DRS4's sampling interval is not exactly 1 nsec.

Straw : Cross section

