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Hadron Calorimetry at Future Colliders
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• Goals for FCC–ee and Muon Colliders: Higgs coupling 
and new physics

• Benchmark example for (hadron) calorimetry
ü Sub-percent precision measurement Hàbb

δ(σ×BR(H→bb)) ≈ 0.2-0.4 % @FCC-ee and Muon Collider 

Requirements for HCAL:  5D calorimetry in Particle Flow
• 𝜎/E ~ O(50%) /√E

→ jet energy resolution~ 30%/√E 
→ 𝜎m/m comparable with natural width for W/Z

• High granularity O(1 cm2) 
track matching and/or reject machine-induced background

• Time resolution: O(few ns-tenths of ps)
reject background and/or improve energy estimation

Hàbb at a Muon Collider, D. Lucchesi at al. 
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https://cerncourier.com/a/sketching-out-a-muon-collider/
https://iopscience.iop.org/article/10.1088/1748-0221/12/10/P10003


A MPGD Hadronic Calorimeter
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MPGD features:
● radiation hardness up to several C/cm2

● rate capability O(MHz/cm2)
● high granularity
● time resolution of few ns
● cost-effectiveness for large area instrumentation

Goals of this project→

Ø compare three MPGD technologies for hadronic calorimetry: 
resistive MicroMegas, µRWELL and RPWELL

Ø investigating timing

Sampling with micro-pattern gaseous detector 
(MPGD) as readout layers

HCAL R&D included in DRD1-WP5 (Calorimetry) and DRD6-
WG1 (Sampling Calorimeter)
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Readout: Digital and Semi-digital HCAL
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Digital Readout (Digital RO) Semi-digital Readout (SDRO)

● Digitization:  1 hit=1cell with energy 
deposit higher than the applied threshold

● Calorimeter response function: 
<Nhit>=f(Eπ)

● Reconstructed energy: Eπ=f-1(<Nhit>)

● Digitization:  defined multiple thresholds 
● Reconstructed energy: Eπ= 𝛂N1+𝜷N2+𝜸N3 :

○ Ni=1,2,3 number of hits above i-threshold 
(0.2-4-12 keV)

○ 𝛂,𝜷,𝜸 parameters obtained by 𝜒2

minimization procedure

G4 simulation 
π± E=20 GeV

G4 simulation 
π± E=20 GeV
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Simulation studies
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Standalone Simulation results
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Geant4 simulation

• Geometry: 2 cm iron, 5 mm gas (Ar/CO2)
• Readout granularity →1×1 cm2 cell size
• Pion guns of different energies

Result: 95% shower containment
• ~10 λI  longitudinal
• ~2 λI transversal

https://doi.org/10.1016/j.nima.2022.167731

SDHCAL: better resolution for  Eπ > 40 GeV
DHCAL: saturation effect for Eπ > 40 GeV
At Eπ= 80 GeV, the resolution

● DHcal ~ 14%
● SDHcal ~ 8%

DHcal
SDHcal

50 layers
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https://doi.org/10.1016/j.nima.2022.167731


Standalone Simulation results with BDT
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XGBoost squared-error regression to improve the energy calibration, linearity and resolution 
● Training: ~600k events, Eπ=2-120 GeV 
● Target : (reconstructed energy) / (MC energy)

Input Features :
● Number of hits in HCAL
● Reconstructed shower energy
● Number of hits in the 3 energy ranges
● Number of hits per layer
● Energy Fraction per layer
● X, Y, and Z centroid (weighted by the hit energy)
● Standard dev of hit coordinate X & Y per layer

ü Stochastic term S compatible with previous results
ü Significant reduction of the constant term 

C : 8.0% →3.75 %
R. Venditti – MPGD HCAL for future collider experiments



Muon Collider simulations

√s = 3 TeV
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√s = 10 TeV

MPGD HCAL performance studied in Muon Collider √s = 3 TeV (w/BIB) and MUSIC √s = 10 TeV (w/ BIB)

MPGD-based HCAL before solenoid
60-layer SAMPLING CALORIMETER
Layer thickness: 2.65 cm - cell: 1 cm2

MPGD-based HCAL outside 80 cm solenoid (barrel only)
70-layer SAMPLING CALORIMETER
Layer thickness: 2.65 cm - cell: 1 cm2

M. Casarsa :
«MUSIC: a detector concept for 10 TeV µ+µ-
Collisions» -EPS HEP 25 -08/07
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https://indico.in2p3.fr/event/33627/contributions/155269/
https://indico.in2p3.fr/event/33627/contributions/155269/
https://indico.in2p3.fr/event/33627/contributions/155269/


Cluster energy resolution
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● Pandora Particle Flow clustering
● 𝛑± guns with energy ranging from 2.5 to 100 GeV, only pions not showering in ECAL;
● Linear calibration to correct the energy response

• Digital RO: saturation at high energies 
• Overall, better performances of the SDRO 

𝜎/E = 45.96%/√𝐸⊕12.36%

• Just SDRO considered
• Different calibrations for barrel and endcap

Barrel: 𝜎/E = 65.39%/√𝐸⊕20.8%
Endcap: 𝜎/E = 46.21%/√𝐸⊕8.40%
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BDT-calibrated cluster energy resolution 
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ü BDT regression improves energy resolution at high 
energy àC~12%à7%, comparable with G4 
simulations

ü Separated calibration for barrel  and endcap
àimproved results at high energies C ~9.16% 
barrel, 6.36% in endcap

Prelim
inary

Same approach as G4 simulation, some changes in input features,  accounting PF clustering 
● e.g. cluster size,  cluster energy, cluster position
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Development of a hadronic 
calorimeter prototype
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MPGD-HCAL Test Beam
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2 test beam campaigns in 2023 and 2024:
● without absorbers for detector characterization,
● with absorber for shower studies (~1𝜆I).

Tracker

HCAL Prototype

12 prototypes of active layers produced and tested 
• 7 µ-RWELL
• 4 MicroMegas
• 1 RPWELL

Detector design:

• Drift gap 6 mm

• Active area 20×20 cm2

• Pad size 1×1 cm2

HCAL prototype:
• 8 MPGD layers alternated with iron absorbers

1 cm

R. Venditti – MPGD HCAL for future collider experiments
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Ed = 0.5 kV/cm
(Ar:CO2:C4H10)  
(93:5:2)

Ed = 1.8 kV/cm
(Ar:CO2:CF4)  
(45:15:40)

Tracker

HCAL Prototype

MPGD Characterization
Active layer characterization - efficiency
• SPS@CERN: ~100 GeV muon beam
• Trigger and tracking with micromegas with 250 strip pitch

Micromegas efficiency ~ 95% µRWELL efficiency ~ 75%

Electronics: APV25 chip + SRS back-end

R. Venditti – MPGD HCAL for future collider experiments



MPGD-HCAL Test Beam
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Understanding µRWELL results
Per Pad efficiency measurement Dead areas due to 

grounding lines

Active layer characterization - efficiency

Inefficiency regions can get partially recovered 
increasing drift field

● Locally  very high efficiency ~ 95%
● Ground lines introduce regions of ~ 1 mm with ~50% 

efficiency drop

R. Venditti – MPGD HCAL for future collider experiments



MPGD Characterization
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ü µRWELL time resolution w/ Ar:CO2:CF4 → few ns (~ 6ns) with Drift field of 3 kV/cm;
ü similar results with different electronics

Electronics VMM

APV electronics

Preliminary

Preliminary

Tracker

HCAL Prototype
Active layer characterization – Time resolution

SPS TB 09.2024 SPS TB 07.2024 

R. Venditti – MPGD HCAL for future collider experiments



MPGD Characterization
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Response uniformity measured using clusters matching muon tracks

● Good uniformity for MicroMegas (~10%)

● Regions of non-uniformity observed on some µ-RWELLs → under investigation

2D-MPV variation for MicroMegas-Bari
Charge MPV distribution for MicroMegas-Bari

Tracker

HCAL Prototype

Active layer characterization – Response uniformity

R. Venditti – MPGD HCAL for future collider experiments



MPGD-HCAL Test Beam
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4 GeV → <Nhit>~67

6 GeV → <Nhit>~87

MPGD HCAL prototype test at CERN PS with pion beams with energy in 2-10 GeV

11 GeV
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ü Data-MC agreement in number of hits

Preliminary

ü Linearity between pion beam energy and total number of hits 
R. Venditti – MPGD HCAL for future collider experiments



Conclusions and next steps
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MPGD HCAL R&D ongoing: simulation and characterization with test beam

• Simulations in G4 and Muon Collider:  promising results, compatible 
with PF requirements

S~40-60%, C~4-9% depending on geometry and clustering

• Calorimeter prototype and MPGD characterization:
• Efficiency: ~95% for MicroMegas, ~ 75% for µRWELL
• Response uniformity: ~10% for MicroMegas and ~15% for 

µRWELL
• µRWELL timing resolution of ~ 6ns 
• Good linearity between pion beam energy and total number of 

hits 

Next steps: Extension calorimeter prototype to ~ 2 𝜆I
○ µRWELL with new grounding schema to reduce dead area
○ 2 MicroMegas and 2 µRWELL 50x50 cm2 under production

R. Venditti – MPGD HCAL for future collider experiments
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Backup



PEP lines Vs PEP dots
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https://indico.cern.ch/event/1413681/contributions/6013367/attachments/2881828/5049134/The%20micro-RWELL%20for%20high-rate.pdf

https://indico.cern.ch/event/1413681/contributions/6013367/attachments/2881828/5049134/The%20micro-RWELL%20for%20high-rate.pdf


Cluster reconstruction
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Response uniformity
22

Preliminary



MPGD-HCAL BIB studies
23

Hit Occupancy:
● BIB containment within the first 20 layers of HCAL
● Probability of a cell to be fired in the first layer :

○ BIB : ~ 1 x 10-5
○ 𝛑± 5 GeV : ~ 0.2 x 10-5
○ 𝛑± 20 GeV : ~ 0.8 x 10-5

● Challenge for low energy pion reconstruction

Arrival time:
● BIB arrival time distribution uniform in the range 7-20 

ns;
● signal arrival time peaks at ~ 6ns;
● discrimination possible for t>9/10 ns → achievable 

with MPGD detectors

Simulation: 60 layers of Iron (19mm) + Ar (3mm); 3 TeV layout; HCAL within the solenoid



Semi-digital readout with BDT 
calibration
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Calibrated energy = BDT output coefficient x Raw cluster energy

BDT implementation details
● XGBoost squared-error regression

● Features dataset from pandora:
○ Cluster energy and 3D centroid position
○ (Cluster size ) / ln (cluster energy +1)
○ Number of hits in ECAL and in HCAL
○ Number of HCAL hits below and above the 2nd threshold of 

the semi-digital RO
○ Total energy in ECAL and in HCAL
○ Total fraction of hits/energy 

in ECAL and in HCAL
○ Number of hits 

for each layer of ECAL 
and HCAL

○ Energy Fraction 
for each layer of ECAL 
and HCAL



MPGD-HCAL within MUSIC - 10 TeV
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Impact of the solenoid on HCAL - pion guns

True Energy = 10 GeV True Energy = 40 GeV

Depending of the hadrons energy, the shower can initiate in the solenoid:
● part of the shower is lost
● Barycenter of the cluster falls in the solenoid region or close to the boundary between HCAL and solenoid
● Reconstructed energy shifts towards lower values

Preliminary



Simulation: Semi-Digital readout

1x1 cm2

cell

3x3 cm2

cell

DOI: 10.1088/1748-0221/19/05/C05037

Investigating the possibility 
to enhance semi-digital 
readout with machine 
learning technique: BDT 
regression

26

https://iopscience.iop.org/article/10.1088/1748-0221/19/05/C05037
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Prototype simulation

MPGD-HCAL Test Beam
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MPGD-HCAL Test Beam
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Prototype simulation
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µrwell time resolution measurement
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Gaussian fit of 

∆t = tclus – ttrackà𝞂 = 𝞂cls2 + 𝞂track

Study 𝞂cls=𝞂uRwell = 𝞂 − 𝞂track wrt DF and TV

TMM layer x (lower charge layer) is taken as reference for 
timing and corrected per time walk


