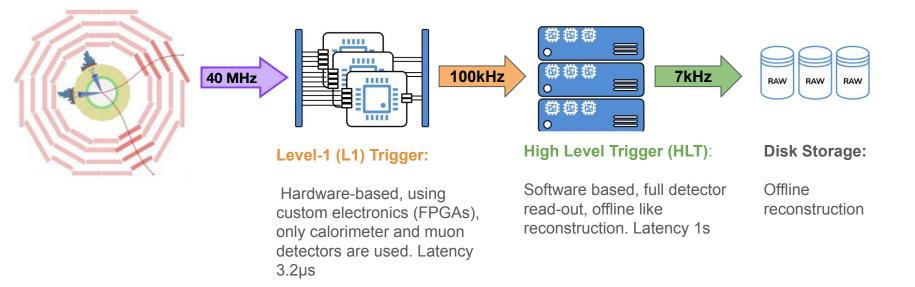


Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2

Saswati Nandan

On behalf of the CMS Collaboration

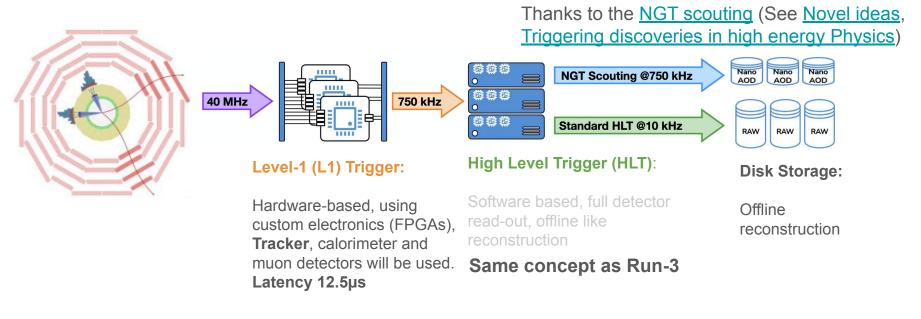
Finanziato dall'Unione europea NextGenerationEU



Istituto Nazionale di Fisica Nuc

CMS trigger system: Run3

- □ LHC bunch crossing happens with 25ns gap
 - Rate of collision 40MHz
 - Not feasible to store all the events
- CMS utilizes two level trigger system to select interesting events

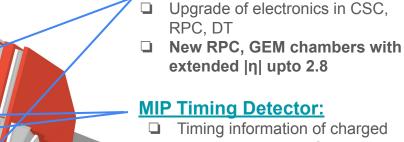


CMS

CMS trigger system: plan for Phase-2

- □ LHC bunch crossing will happen with 25ns gap
 - Rate of collision 40MHz
 - Not feasible to store all the events Same as Run-3
- CMS will utilize two level trigger system to select interesting events

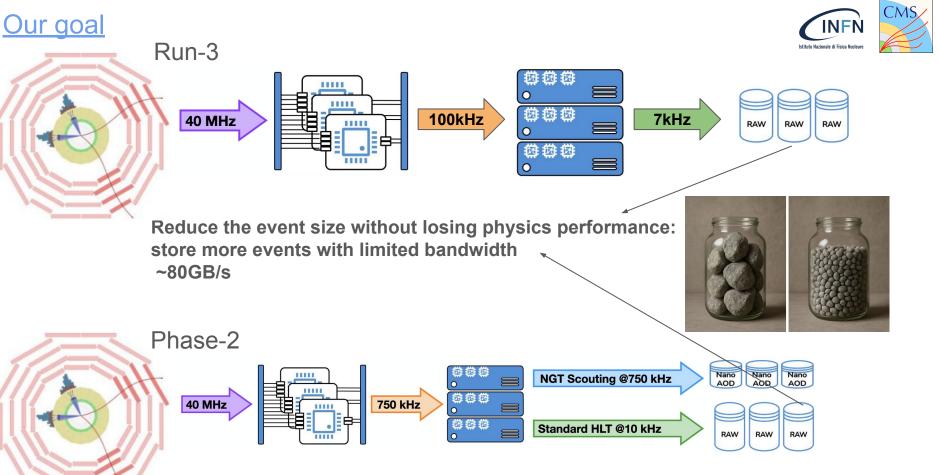
Tracker:


- Increased granularity,
- Less material
- Extended |n| < 4

Barrel Calorimeter:

- Single crystal information at L1, better matching of tracks and shower, improved isolation
- Replacement of backend electronics for both EB and HB

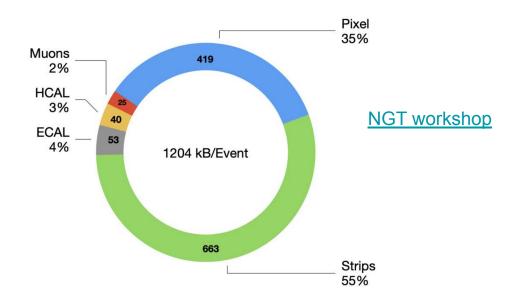
Endcap Calorimeter:


- CE-E: Pb absorber+Silicon sensor
- CE-H: Stainless Steel+scintillator
- 3D showers, timing information

Muon detector

- Timing information of charged tracks with 30-40 PS precision
- **BTL:crystal scintillator+SiPM**
- ETL: Low Gain Avalanche Diodes

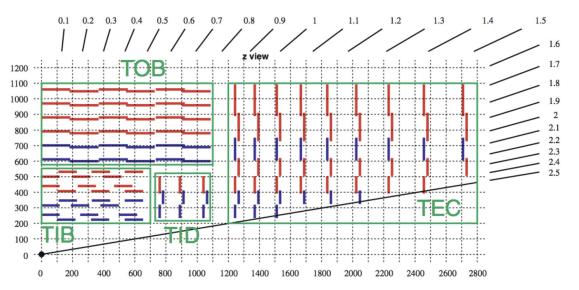
New detector and increased granularity will increase the Phase-2 event size significantly !


Saswati Nandan

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W Next Generation Triggers

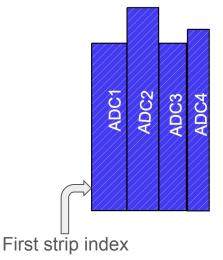
Detector contribution to the event size at HLT: Run3

- Event size \sim 1.2 MB at pile-up \sim 60
 - □ Main contribution comes from the silicon strip tracker detector



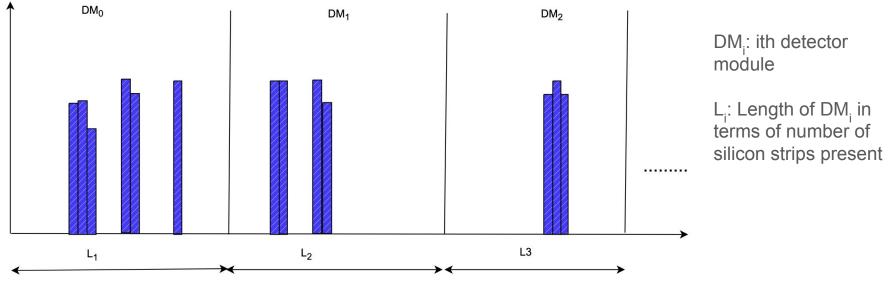
Our attempt is to reduce the size of Strip detector data
without losing physics performance significantly → Lossy compression

Strip detecor in CMS Tracker


- □ Total active area of strip detector around 200m²
 - □ ~ 9.6 M read-out channels in total
- Silicon strip modules:
 - □ p-on-n sensors, 320/500 µm thickness
 - □ 512/728 strips per module (4-6 APV25 chips)

Strip Cluster

- Strip cluster is a set of consecutive strips satisfying some thresholds to avoid the detector noise.
- At the HLT step, **raw information** about the individual strip cluster is stored:
 - □ Index position of the first strip belonging to the cluster, stored as 16 bit integer.
 - □ The analog-to-digital counter (ADC) value for each strip within a cluster, stored as 8 bit integer.



First strip index	16 bit
ADC value	8*4= 32 bit
Total	48 bit

Strip Cluster collection

- A strip-cluster collection is a set of clusters that belongs to a particular detector module.
- The following information about the strip cluster collection is stored:
 - A unique identification number of a detector module (detId) containing at least one cluster
 - □ 369120277, 369120278, 369120281, 369120282... large number!

Measures taken to reduce the strip cluster size in Heavy Ion analysis: HI raw

- The event size in HI collision is higher than pp collision
 - $\sim 6\%$ higher in compressed event size
- Explored unique approach to reduce the size of strip cluster in Run-3: approximated raw', <u>CERN-CMS-DP-2024-007</u>
 - □ Store size of the cluster: 8 bit integer
 - Store average charge (total ADC value / size): 8 bit integer
 - Store barycenter position, ADC-weighted strip index center: 16 bit integer

77	Barycenter position: ∑ i*adc_i / ∑ adc_i	16 bit	
	Average charge:	8 bit	Reduced event size by ~ 50%
	∑adc_i / ∑i		
	size	8 bit	
	Total bit	32 bit	
	size		

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 We Nex Generation Tragers

Can we reduce the strip cluster size further? CMS DP-2025/031

Saswati Nandan

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 WNexTGen

Use fewer bits to encode barycenter and average charge information: raw'

□ Currently in HI, the barycenter information is stored with 10% precision

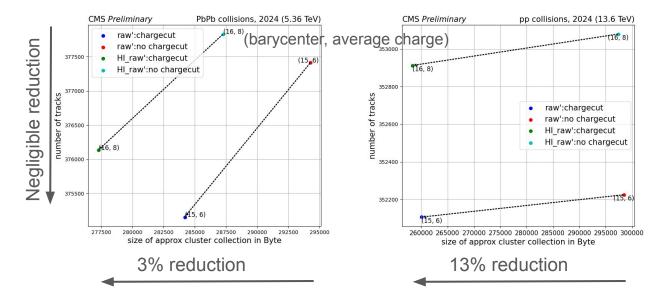
std :: round(barycenter's value \times 10)

Generalize the things in such a way that any bit configurations can be used to store barycenter/average charge (variable) information using the following formula:

std::round(variable's value \times

pow(2,maximum bit) - 1
variable's maximum value

Resolution of variable is controlled by these terms


Apply tight charge cut on strip cluster

pp

- Apply tight charge cut on strip cluster at the HLT level
 - \Box ADC value per cm of detector module > 1945.
 - strip clusters failing this cut, are not not saved at the HLT output
 - Reduce the contribution coming from pile-up

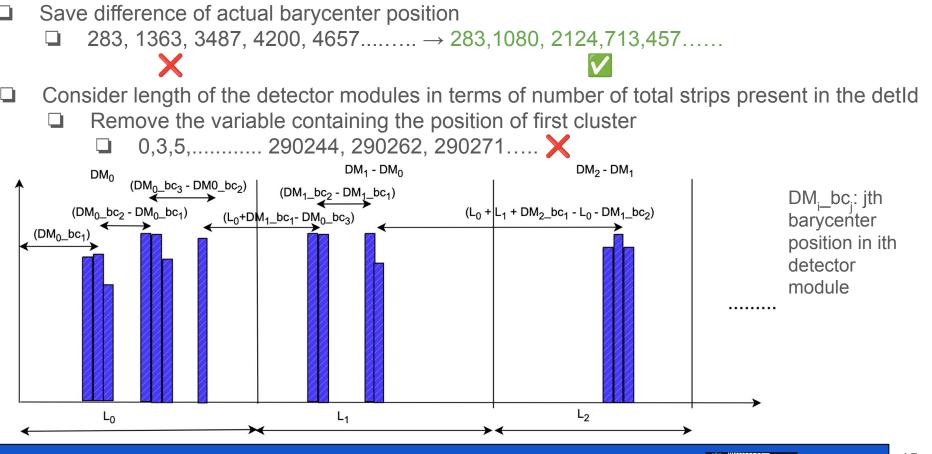
This cut reduces the size of strip cluster collection significantly without affecting track reconstruction.

PbPb

Saswati Nandan

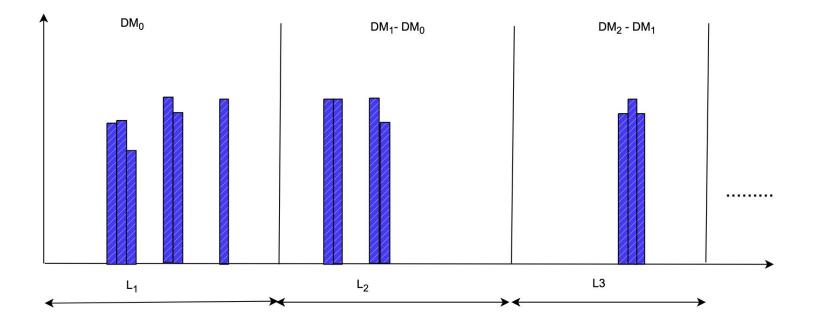
Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 We Nex I Generation Transmission

Can we do better than this?


Saswati Nandan

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W Nex Generation Tragen

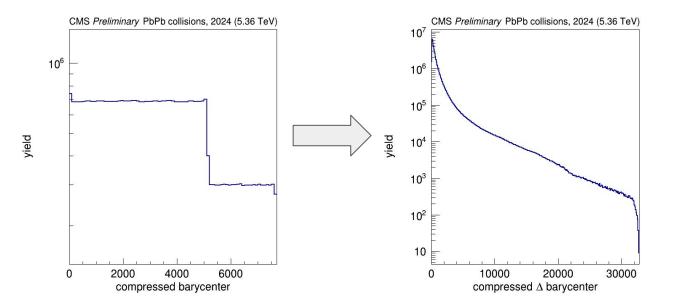
Save difference of barycenter position: v2



Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 Wext Generation Triggers

Save difference of detId: version-2 (v2)

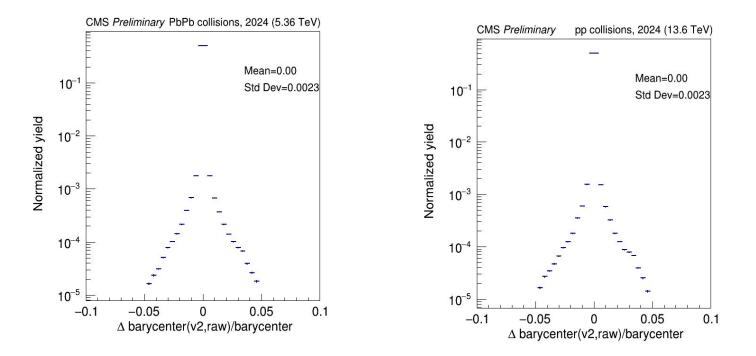
□ Instead of saving detld, save difference of detld □ 369120277, 369120278, 369120281, 369120282 ... → 369120277, 1, 3, 1, 1.... ×



Saswati Nandan

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W Nex I Generation Triggers

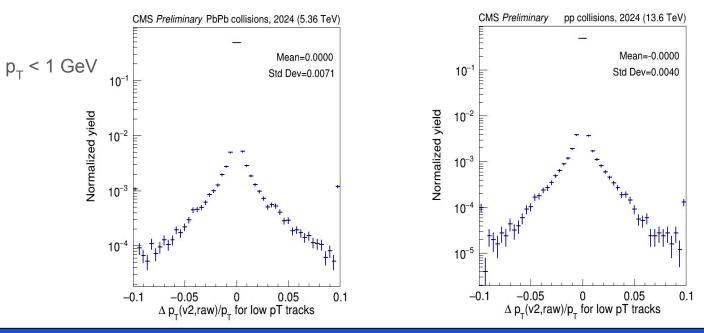
Compressed, barycenter vs difference of barycenter distribution


Barycenter distribution becomes sharply falling for $v2 \rightarrow$ reduces entropy of the variable.

- Less bits to represent for more frequent values while more bits for larger values with less frequency.
 - Compression algorithm becomes more efficient.

Resolution of barycenter position: v2

□ Matching of the barycenter position between raw and v2 is good.


Absolute delta in the barycenter position is below 0.05 strips.

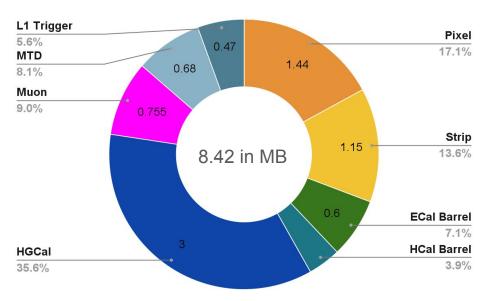
Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 WNextGen

Effect on track reconstruction: v2

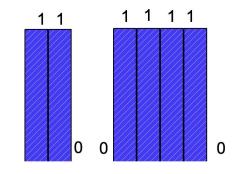

- Tracks are reconstructed with raw clusters and clusters with v2 and selected with normalized $\chi^2 < 2$, $|\Delta p_{\tau} / p_{\tau}| < 0.10$, total number of hits in tracker > 11
- Tracks between raw and v2 are matched with the closest ΔR , with maximum $\Delta R < 0.5$
- Good matching is observed

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 We Nex Generation Transformer


The configuration for barycenter, and average charge (15,6) in v2 gives reduction in strip cluster collection's size > 10% with respect to current method, while keeping similar performance in track reconstruction.

CMS DP-2025/031


Detector contribution to the event size at HLT: Phase-2

HLT TDR

Maximum contribution comes from HGCal followed by Pixel. Strip cluster will be binary completely

- It might be still useful to save the difference of barycenter position in phase-2 as well.
- Size of HGCal can be reduced following the same method as strip detector.

Conclusion

- **CMS** is approaching to the High-Luminosity Phase-2 scenario.
- Event size is the main bottleneck to store interesting events at the HLT with limited bandwidth.
- □ In Run-3 HI collision, the raw strip cluster was replaced by approximate raw' strip cluster which reduced the event size by around factor 2.
- Attempt is made to reduce the strip cluster size further by extending the approximate raw' cluster method
 - Strip cluster collection's size is reduced significantly by applying tight charge cut on strip cluster, using fewer bits to save the difference of barycenter position, and average charge.
 - **Total reduction is ~16% for HI and ~23% for pp.**
 - □ This method will be implemented for next HI collision run and, in Phase-2, the plan is to use the method in both pp and HI collisions.
- Same method can be propagated to other sub-detectors like HGCal for Phase-2.
- Work is ongoing!

Stay tuned !!!!

Back up

Saswati Nandan

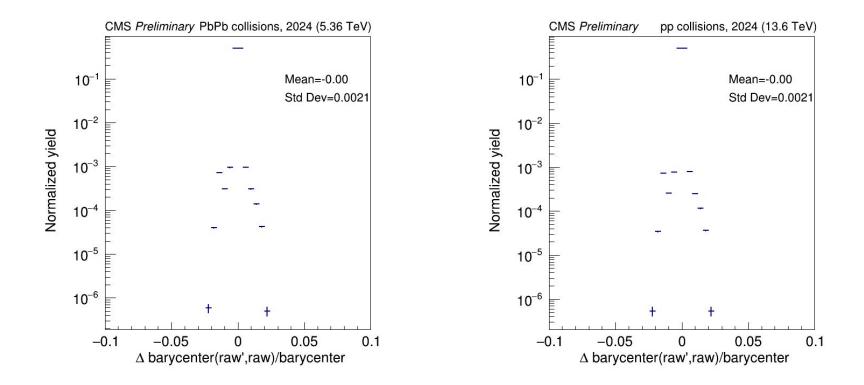
Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 WNexTGen

CERN-EP-2025-036

Sub- detector	Layer	No. of APV25s	Pitch [µm]		Sub- Rin letector		No. of APV25s	Pitch range [µm]
TIB	1, 2	6	80		TID	1	6	80.5–119
TIB	3,4	4	120	Г	TEC	1	6	81–112
TOB	1 - 4	4	183	Г	TID/TEC	2	6	113–143
TOB	5,6	6	122	Г	TID/TEC	3	4	123–158
			25	Г	TEC	4	4	113–139
				Г	TEC	5	6	126–156
				Г	TEC	6	4	163–205
				Γ	TEC	7	4	140–172

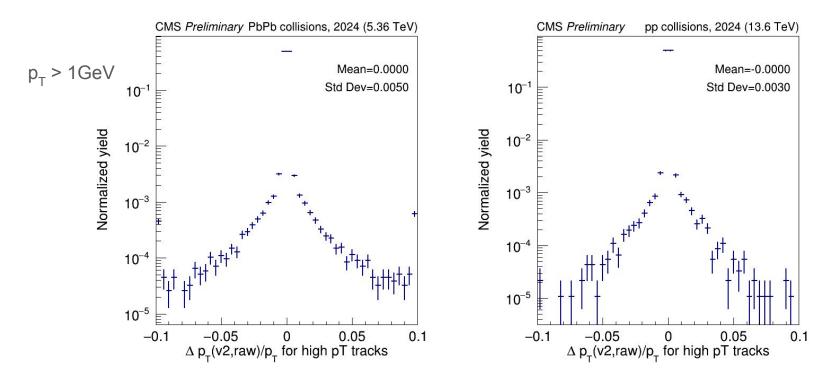
Saswati Nandan

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W NexTGen

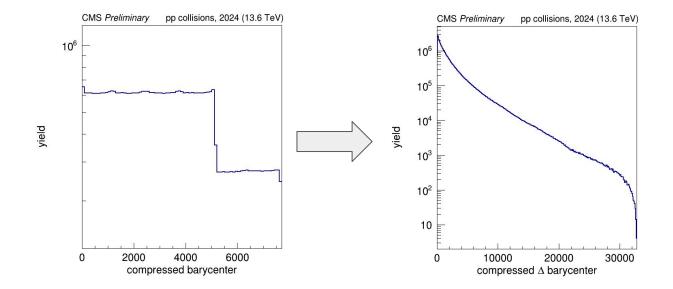


2009, JINST, 4 P05004

1. *Cluster reconstruction*. The cluster reconstruction groups adjacent strips whose associated charges pass a set of thresholds. The thresholds depend on the noise levels characterizing the strips of the cluster. Clusters are reconstructed by searching for a seed strip with a signalto-noise ratio (S/N) greater than 3. Neighboring strips are attached to the cluster if their signal-to-noise ratio exceeds 2. The total signal size of the cluster must exceed five times the quadratic sum of the individual strip noises. The cluster reconstruction algorithm is referred to as *3-Threshold* algorithm. The signal of a cluster is based on the sum of the ADC counts of all associated strips. In the most recent reconstruction pass a correction for the variations in the electronic gain was applied. These corrections had been derived from the height of digital synchronization signals [2].


Resolution of barycenter position: raw'

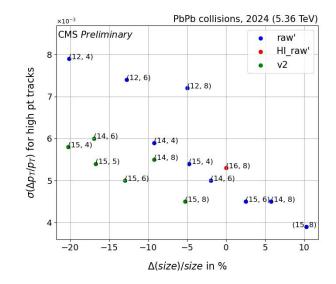
Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W Next Generation Triggers

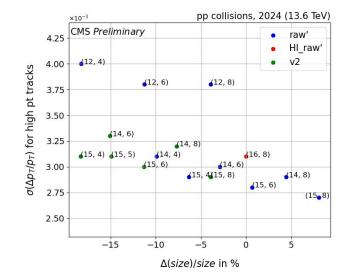


Saswati Nandan

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W Next Generation Triggers

Compressed, barycenter vs difference of barycenter distribution


Saswati Nandan


Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W Next Generation Trigger

Comparison among different bit configurations and methods

р_т > 1 GeV

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W Next Generation Triggers

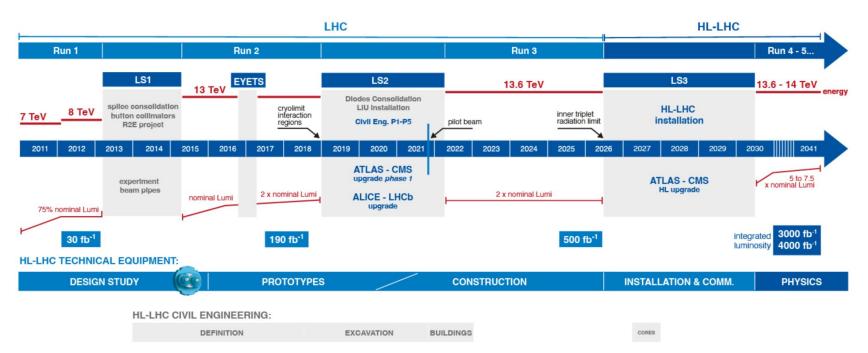
HLT TDR

Table 3.2: CMS Phase-2 detector readout and ATCA back-end (BE) electronics characteristics and event size summary. Two scenarios for HL-LHC are considered: Run-4 with peak $\langle PU \rangle = 140$ and a L1 rate of 500 kHz, and Run-5 with peak $\langle PU \rangle = 200$ and a L1 rate of 750 kHz. Columns 11–12 denote the average throughput (Thru) per sub-system back-end board and back-end crate for the ultimate scenario of Run-5.

Sub-system	Back-end	Back-end	BE	BE	Front-end	Subevt	Subevt	Thru	Thru	Av thru	Av thru	Notes
	platform	FPGA	boards	crates	lpGBT links ^a	size (MB)	size (MB)	(Tb/s)	(Tb/s)	per	per	
						$\langle \mathrm{PU} \rangle = 140$	PU=200	PU=140	$\langle PU \rangle = 200$	BE board	BE crate	
								500 kHz	750 kHz	(Gb/s)	(Gb/s)	
Inner Tracker	Apollo	2xVU13P	28	4	1260	1.01	1.44	4.03	8.64	309	2160	
Outer Tracker - PS.	Serenity	1xVU13P	108	9	5592	0.50	0.72	2.01	4.31	40	479	(^b)
Outer Tracker - 2S.	Serenity	1xVU13P	108	9	7608	0.30	0.43	1.21	2.58	24	287	(^b)
Track Finder TPG	Apollo	2xVU13P	180	18		0.01	0.01	0.04	0.06	1	1	
MIP Timing Det BTL	Serenity	2xKU15P	8	2	864	0.17	0.24	0.67	1.44	180	720	
MIP Timing Det ETL	Serenity	2xKU15P	14	2	1600	0.31	0.44	1.23	2.64	189	1320	
ECAL Barrel	BCP	1xVU13P	108	12	9792	0.42	0.60	1.68	3.60	33	300	
HCAL Barrel	BCP	1xVU13P	18	2	other	0.24	0.24	0.96	1.44	80	720	
HCAL HO	BCP	1xVU13P	9	1	legacy	0.03	0.03	0.12	0.18	20	180	
HCAL HF	BCP	1xVU13P	9	1	other	0.06	0.06	0.24	0.36	40	360	
HGCAL	Serenity	2xKU15P	84	12	8000	2.10	3.00	8.40	18.00	214	1500	
HGCAL TPG Stage1	Serenity	2xVU7P	72	8	9000	0.11	0.15	0.42	0.90	13	113	
HGCAL TPG Stage2	Serenity	2xVU9P	54	6		0.04	0.05	0.14	0.30	6	50	
Muon DT	BMT	1xVU13P	84	8	2400	0.11	0.15	0.42	0.90	11	113	
Muon CSC	APX	1xVU13P	10	2	other	0.33	0.47	1.32	2.82	282	1410	
Muon GEM - GE1/1	APX	1xVU13P	8	1	GBTX	0.002	0.003	0.01	0.02	2	18	
Muon GEM - GE2/1	APX	1xVU13P	8	1	GBTX	0.001	0.002	0.01	0.01	1	9	
Muon GEM - ME0	APX	1xVU13P	18	2	1728	0.08	0.12	0.34	0.72	40	360	
Muon RPC	Serenity	UltraScale+	18	3	other	0.01	0.01	0.03	0.07	3	22	
Level-1 Trigger	various	UltraScale+	280	28		0.26	0.26	1.04	1.56	6	60	(^c)
Total			>1226	>130	50k	6.08	8.42	24.3	50.5			

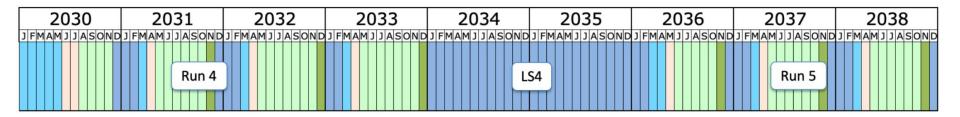
^aCount of links based on lpGBT-VL+ (see Appendix A), "Other" links include the use of VL(+) components with radiation-tolerant FPGA at the front-end.

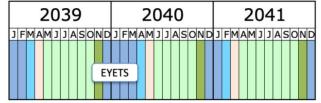
^bThe Outer Tracker uses the same links to multiplex trigger and DAQ data. The proportion of trigger data is expected to be roughly 80%.


^cThe Level-1 trigger comprises 5 sub-systems using the APX, BMT, X2O and Serenity platforms.

LHC/HL-LHC plan

LHC / HL-LHC Plan




Saswati Nandan

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 WNexTGen

2021	2022	2023	2024	2025	2026	2027	2028	2029
J FMAM J J ASOND	J FMAMJ J ASOND	J FMAMJ J ASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	J FMAM J J A SOND	J FMAMJ J ASOND
		Run	3			Long	Shutdown 3 (L	S3)

Last update: November 24

Raw Data Reduction in the CMS Experiment for Run-3 and Phase-2 W Next Generation Trigger