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Introduction
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- Run 2-3 datasets are unprecedented 
- Rate of accumulation will only 

increase with HL-LHC 
- W boson prod. is ~O(1000)x greater 

than Higgs production 
- Need to cope with huge datasets 

➡HL-LHC is now!

W boson vs. H production
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Measuring W ⟶μν at CMS

https://cds.cern.ch/record/2909335Kenneth Long

Very precise μ reconstruction

ν not directly reconstructed

Pileup ∝ Number of vertices =  22

https://cds.cern.ch/record/2909335
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- Binned maximum likelihood fit: test consistency of data with different mW hypotheses

mW measurement at a glance
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https://arxiv.org/abs/2412.13872

https://arxiv.org/abs/2412.13872
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The mW measurement at CMS
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- yW (ημ), is dependent on W helicity, driven by PDFs 
- Sensitivity to PDF from ημ 
➡Extract mass from fit to (qμ, ημ, pTμ) distribution

- ~2000 bins and 5000 nuisance parameters 
- Major computational challenge! 

- This talk is a condensed version of a detailed CERN 
IT seminar by D. Walter (MIT)

Kenneth Long 1D visualisation of 2D distribution: ημ in 1 GeV bins of pTμ from 26-56 GeV

https://indico.cern.ch/event/1464211/
https://indico.cern.ch/event/1464211/
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More than a single measurement!
★ mW measurement★ mZ measurement from mμμ ★ mZ measurement from pTμ

Unfolding, simulation studies Analysis of low pileup data

+ … ?

Helicity cross section fit
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Design considerations and choices

- Robust and transparent

- Well validated 
- Well documented 

-

- Low barrier to entry

- Flexible/general design 
- Separation of tasks 
- Easily extensible 

- Steer and postprocess 
with python 

- Use libraries, favour 
general implementations 

- Examples and user 
support 

-

Ideals can be in conflict 
⟹ a balancing act!

- Self-documenting 
- Meticulous logging 
- CI/CD with Github actions

- Performant!

- Fast time-to-insight while 

analysing large dataset 
- Full exploit computational 

resources 
- Highly parallelised 

- Low level code in C++ 
- Avoid thread locking actions 

(e.g., unnecessary memory 
allocations) 

-

Design choices
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Outline of the data processing workflow

Data tier Size (kB)
RAW 1000
Gen <50
SIM 1000
DIGI 3000
RECO(SIM) 3000
AOD(SIM) 400
MiniAOD(SIM) 50
NanoAOD(SIM) 2

Run/managed with CMS-
wide grid resources 

- Raw data (and simulation) processed with the standard CMS reconstruction 
chain (EDM format instantiates C++ objects) 

➡Final, lightweight NanoAOD produced with collaboration wide resources in 
standard processing chain[0,1] 
- Flat ROOT TTree with only data primitive types (or arrays of primitives) 

- Independent of experiment specific software (e.g., no custom C++ objects) 

- High level physics objects (pT, η, ɸ, ID, ... of muons, electrons, jets, …) 

- ~2kB per event 

- Good for ~50% of analyses 

-

https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038
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Outline of the data processing workflow

Run/managed with CMS-
wide grid resources 

Run/managed by analysis 
team reseources

(Ran ~10 times over 3 years)

Data tier Size (kB)
RAW 1000
Gen <50
SIM 1000
DIGI 3000
RECO(SIM) 3000
AOD(SIM) 400
MiniAOD(SIM) 50
NanoAOD(SIM) 2

➡Final, lightweight NanoAOD produced with collaboration wide resources in 
standard processing chain[0,1] 
- Flat ROOT TTree with only data primitive types 

- Independent of experiment specific software (e.g., no custom C++ objects) 

- High level physics objects (pT, η, ɸ, ID, ... of muons, electrons, jets, …) 

- ~2kB per event 

- Easily customisable, important for this analysis

- Refit muon tracks, store low-level fit information, additional generator 

information (e.g., more PDF sets…) 

-

https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038
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The “analysis” steps of the processing workflow

NanoAOD/NanoGEN

- Process ~1 B data events and 4B simulation events in NanoAOD format (every time, no pre-filtering!) 
- Output high dimensional Boost histograms 
- Store in custom hdf5 format, further processing for statistical analysis, publication-level plots…

Executed locally on high thread-count machines 
at CERN/Pisa/MIT (256/398/768 threads)

WRemnants

https://github.com/WMass/WRemnants


Kenneth LongKenneth Long 11

Data processing with RDataframe
- Select objects, filter events, fill histograms 

- Pythonic, declarative, graph-style analysis 
- Lazy execution: perform all operations in single (parallelised) event loop 
- Code JIT compiled 

- From short strings in df.Define() 
- From C++ code, possibly with objects holding user data

- See RDF reference, 
documentation, CERN seminar 

Histogram with 
corrections as 
member data

Python access

C++ definition

https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_03009/epjconf_chep2020_03009.html
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://indico.cern.ch/event/849610/
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High-dimensional Boost histograms 
- Multi-dimensional histograms are the basic unit of the analysis 

- Results from fit to 3D distribution 
- Additional dimensions define control/signal regions 
- Systematic variations axis (e.g., axis of length 100 for 100 PDF eigenvector variations) 

- Avoids multiple bin lookups with filling histogram with variations defined by weights 
★ Largest variation histogram is 8D, total ~20 M bins, ~10 processes = 2.5 GB 

- By default RDF paralyses with 1 copy of histograms per thread ⟹ infeasible memory footprint! 
➡Solution: use Boost histogram with std::atomic<double> storage type  

- One copy of histogram shared by all threads

400M (W→μν) events, 10 copies of pdf variation histograms, 256 threads (2xEPYC 7702) 

256 copies (1/thread)

Bin lookup per syst entry

Minimal graph complexity
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Statistical analysis
- Analysis is based on determining the value of mW that maximizes Likelihood (minimises -2ln L)

-ln where

Gaussian constraint nuisance parameters~2000 ~10 ~5000

- RooFit+Minuit workflow found to be insufficient for minimisation  
- Limited numerical precision/efficiency/run time 

- Built custom implementation of likelihood and minimisation in tensorflow:  
➡Combinetf (PyHEP talk) 

- Automatic differentiation for exact gradient calculation 
- Custom minimizer to reliably find global minimum in high dimensions based on 

arXiv:1506.07222 
- Fast—O(10s), numerically accurate, stable 

- Extensively validated against CMS Combine package 

https://indico.cern.ch/event/882824/contributions/3932491/
https://arxiv.org/abs/2404.06614
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Statistical analysis
- Rewrite in tensorflow2 recently completed 
➡Rapid Automatic Bin Based Inference Tool


- New UI + More developer friendly 
- More efficient computation of hessian and 

hessian vector products 
- Trust-krylov minimizer from scipy

Analysis output
Postfit 

visualization

https://github.com/WMass/rabbit

- Native/improved support for plotting post-fit distributions 
- Including applying postfit nuisance pulls/constraints 

from separate fit 
- Ex: postfit generator-level distribution from fit to 

reconstructed variables

https://github.com/WMass/rabbit
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Continuous integration
- Common framework for multiple analysis interpretations  

- Reuse existing code, find/avoid bugs, save time 
- Rapid developement with O(10) contributors  

- >600 pull requests (PRs) 

- Updates often unintentionally affected (or break) other parts 
- Not noticed immediately, difficult to trace down source 
- Harder to fix after the fact 

- Solution → GitHub actions: platform for automate developer workflows 
- Use continuous integration and deployment (CI/CD) pipeline 
- Slim and easily to set up and manage (compared to e.g. Jenkins)  

- Locally hosted on dedicated machine at CERN 
- Executed on subset of data for each PR 
- Full stats run 3/week over night
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Continuous integration pileline
- Execute full graph of analysis workflows and dependencies for every PR 
- independent steps run in parallel, error stop further processing 
- Linters (Black, Flake, isort) check code quality and basic errors in first step
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Continuous integration and self-documentation: summary pages

- Full result produced on interactive web pages 
- Plots for all analysis 
- Log files with yields 
- Uncertainty Impacts, pulls/constraints 

- Allows precise validation of changes to physics results
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Continuous integration and self-documentation: logging

[…]

- Every output file and plot contains all meta 
data needed to reproduce it 

- Command used to produce it

- Git hash/diff of repo when it was created 
- Same information about input file(s) needed 

- Additional useful summary information for plots
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Conclusions and future perspectives

- High-performance software, computing played a major role in the CMS mW measurement 
- Software designing for the task was a significant collaborative effort 
- Largely successful! But trade-offs necessary, and improvements continue 
- Many more interesting details of the analysis, see CERN IT seminar by D. Walter (MIT) for more  

- Developments being leveraged more widely within CMS 
- Some optimisations integrated upstream into ROOT (e.g., xrootd file reading) or planned for future 

development (atomic histogram filling) 
- Libraries or code can be used by other analyses (extended NanoAOD, luminosity counter) 

- Performance and design considerations are highly relevant for the HL-LHC era 
- Exact software solutions may change over time 
- Core design considerations and principles that form the foundation of successful analysis today 

will likely stay relevant

https://indico.cern.ch/event/1464211/
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Backup

Kenneth Long 20
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Hardware and resources
- The “analysis” (data processed into histrograms) step is executed locally 

- No resubmission of failed jobs/ merging of jobs etc. 
- Direct feedback on progress 
- Heavily multithreaded 

- Necessitates high performance machine with high availability 
- High performance, high thread count machines (256/398/768 threads) at CERN, Pisa, MIT 
- Reading/writing on fast NVMe SSDs 
- Local or via network interface 100Gbit/s (e.g., from CERN eos via xrootd)

CERN MIT/Pisa MIT
CPU 2 EPYC 7702 2 EPYC 7702 2 EPYC 9965
cores 128 192 384
threads 256 384 768
memory 1TB 1.5/2TB 1.5 TB

- Sounds like a luxury that cannot be widely adopted but… 
- Price/core is increasingly competitive with several low-core machines  
- Can be seamlessly integrated into condor/slurm/etc cluster 
- For future: DistRDF allows interactive-like running

https://arxiv.org/abs/2506.01958


