
Kenneth Long 1

The CMS W mass analysis workflow and framework

a blueprint for analysis at the HL-LHC

EPS-HEP 2025

Kenneth Long

Kenneth Long

Introduction

2

- Run 2-3 datasets are unprecedented
- Rate of accumulation will only

increase with HL-LHC
- W boson prod. is ~O(1000)x greater

than Higgs production
- Need to cope with huge datasets

➡HL-LHC is now!

W boson vs. H production

Kenneth Long 3

Measuring W ⟶μν at CMS

https://cds.cern.ch/record/2909335Kenneth Long

Very precise μ reconstruction

ν not directly reconstructed

Pileup ∝ Number of vertices = 22

https://cds.cern.ch/record/2909335

Kenneth Long
- Binned maximum likelihood fit: test consistency of data with different mW hypotheses

mW measurement at a glance

4Kenneth Long

https://arxiv.org/abs/2412.13872

https://arxiv.org/abs/2412.13872

Kenneth Long

The mW measurement at CMS

5

- yW (ημ), is dependent on W helicity, driven by PDFs
- Sensitivity to PDF from ημ
➡Extract mass from fit to (qμ, ημ, pTμ) distribution

- ~2000 bins and 5000 nuisance parameters
- Major computational challenge!

- This talk is a condensed version of a detailed CERN
IT seminar by D. Walter (MIT)

Kenneth Long 1D visualisation of 2D distribution: ημ in 1 GeV bins of pTμ from 26-56 GeV

https://indico.cern.ch/event/1464211/
https://indico.cern.ch/event/1464211/

Kenneth Long 6

More than a single measurement!
★ mW measurement★ mZ measurement from mμμ ★ mZ measurement from pTμ

Unfolding, simulation studies Analysis of low pileup data

+ … ?

Helicity cross section fit

Kenneth LongKenneth Long 7

Design considerations and choices

- Robust and transparent

- Well validated
- Well documented

-

- Low barrier to entry

- Flexible/general design
- Separation of tasks
- Easily extensible

- Steer and postprocess
with python

- Use libraries, favour
general implementations

- Examples and user
support

-

Ideals can be in conflict
⟹ a balancing act!

- Self-documenting
- Meticulous logging
- CI/CD with Github actions

- Performant!

- Fast time-to-insight while

analysing large dataset
- Full exploit computational

resources
- Highly parallelised

- Low level code in C++
- Avoid thread locking actions

(e.g., unnecessary memory
allocations)

-

Design choices

Kenneth LongKenneth Long 8

Outline of the data processing workflow

Data tier Size (kB)
RAW 1000
Gen <50
SIM 1000
DIGI 3000
RECO(SIM) 3000
AOD(SIM) 400
MiniAOD(SIM) 50
NanoAOD(SIM) 2

Run/managed with CMS-
wide grid resources

- Raw data (and simulation) processed with the standard CMS reconstruction
chain (EDM format instantiates C++ objects)

➡Final, lightweight NanoAOD produced with collaboration wide resources in
standard processing chain[0,1]
- Flat ROOT TTree with only data primitive types (or arrays of primitives)

- Independent of experiment specific software (e.g., no custom C++ objects)

- High level physics objects (pT, η, ɸ, ID, ... of muons, electrons, jets, …)

- ~2kB per event

- Good for ~50% of analyses

-

https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038

Kenneth LongKenneth Long 9

Outline of the data processing workflow

Run/managed with CMS-
wide grid resources

Run/managed by analysis
team reseources

(Ran ~10 times over 3 years)

Data tier Size (kB)
RAW 1000
Gen <50
SIM 1000
DIGI 3000
RECO(SIM) 3000
AOD(SIM) 400
MiniAOD(SIM) 50
NanoAOD(SIM) 2

➡Final, lightweight NanoAOD produced with collaboration wide resources in
standard processing chain[0,1]
- Flat ROOT TTree with only data primitive types

- Independent of experiment specific software (e.g., no custom C++ objects)

- High level physics objects (pT, η, ɸ, ID, ... of muons, electrons, jets, …)

- ~2kB per event

- Easily customisable, important for this analysis

- Refit muon tracks, store low-level fit information, additional generator

information (e.g., more PDF sets…)

-

https://cds.cern.ch/record/2699585/?ln=de
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038

Kenneth LongKenneth Long 10

The “analysis” steps of the processing workflow

NanoAOD/NanoGEN

- Process ~1 B data events and 4B simulation events in NanoAOD format (every time, no pre-filtering!)
- Output high dimensional Boost histograms
- Store in custom hdf5 format, further processing for statistical analysis, publication-level plots…

Executed locally on high thread-count machines
at CERN/Pisa/MIT (256/398/768 threads)

WRemnants

https://github.com/WMass/WRemnants

Kenneth LongKenneth Long 11

Data processing with RDataframe
- Select objects, filter events, fill histograms

- Pythonic, declarative, graph-style analysis
- Lazy execution: perform all operations in single (parallelised) event loop
- Code JIT compiled

- From short strings in df.Define()
- From C++ code, possibly with objects holding user data

- See RDF reference,
documentation, CERN seminar

Histogram with
corrections as
member data

Python access

C++ definition

https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_03009/epjconf_chep2020_03009.html
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://indico.cern.ch/event/849610/

Kenneth LongKenneth Long 12

High-dimensional Boost histograms
- Multi-dimensional histograms are the basic unit of the analysis

- Results from fit to 3D distribution
- Additional dimensions define control/signal regions
- Systematic variations axis (e.g., axis of length 100 for 100 PDF eigenvector variations)

- Avoids multiple bin lookups with filling histogram with variations defined by weights
★ Largest variation histogram is 8D, total ~20 M bins, ~10 processes = 2.5 GB

- By default RDF paralyses with 1 copy of histograms per thread ⟹ infeasible memory footprint!
➡Solution: use Boost histogram with std::atomic<double> storage type

- One copy of histogram shared by all threads

400M (W→μν) events, 10 copies of pdf variation histograms, 256 threads (2xEPYC 7702)

256 copies (1/thread)

Bin lookup per syst entry

Minimal graph complexity

Kenneth LongKenneth Long 13

Statistical analysis
- Analysis is based on determining the value of mW that maximizes Likelihood (minimises -2ln L)

-ln where

Gaussian constraint nuisance parameters~2000 ~10 ~5000

- RooFit+Minuit workflow found to be insufficient for minimisation
- Limited numerical precision/efficiency/run time

- Built custom implementation of likelihood and minimisation in tensorflow:
➡Combinetf (PyHEP talk)

- Automatic differentiation for exact gradient calculation
- Custom minimizer to reliably find global minimum in high dimensions based on

arXiv:1506.07222
- Fast—O(10s), numerically accurate, stable

- Extensively validated against CMS Combine package

https://indico.cern.ch/event/882824/contributions/3932491/
https://arxiv.org/abs/2404.06614

Kenneth LongKenneth Long 14

Statistical analysis
- Rewrite in tensorflow2 recently completed
➡Rapid Automatic Bin Based Inference Tool

- New UI + More developer friendly
- More efficient computation of hessian and

hessian vector products
- Trust-krylov minimizer from scipy

Analysis output
Postfit

visualization

https://github.com/WMass/rabbit

- Native/improved support for plotting post-fit distributions
- Including applying postfit nuisance pulls/constraints

from separate fit
- Ex: postfit generator-level distribution from fit to

reconstructed variables

https://github.com/WMass/rabbit

Kenneth LongKenneth Long 15

Continuous integration
- Common framework for multiple analysis interpretations

- Reuse existing code, find/avoid bugs, save time
- Rapid developement with O(10) contributors

- >600 pull requests (PRs)

- Updates often unintentionally affected (or break) other parts
- Not noticed immediately, difficult to trace down source
- Harder to fix after the fact

- Solution → GitHub actions: platform for automate developer workflows
- Use continuous integration and deployment (CI/CD) pipeline
- Slim and easily to set up and manage (compared to e.g. Jenkins)

- Locally hosted on dedicated machine at CERN
- Executed on subset of data for each PR
- Full stats run 3/week over night

Kenneth LongKenneth Long 16

Continuous integration pileline
- Execute full graph of analysis workflows and dependencies for every PR
- independent steps run in parallel, error stop further processing
- Linters (Black, Flake, isort) check code quality and basic errors in first step

Kenneth LongKenneth Long 17

Continuous integration and self-documentation: summary pages

- Full result produced on interactive web pages
- Plots for all analysis
- Log files with yields
- Uncertainty Impacts, pulls/constraints

- Allows precise validation of changes to physics results

Kenneth LongKenneth Long 18

Continuous integration and self-documentation: logging

[…]

- Every output file and plot contains all meta
data needed to reproduce it

- Command used to produce it

- Git hash/diff of repo when it was created
- Same information about input file(s) needed

- Additional useful summary information for plots

Kenneth LongKenneth Long 19

Conclusions and future perspectives

- High-performance software, computing played a major role in the CMS mW measurement
- Software designing for the task was a significant collaborative effort
- Largely successful! But trade-offs necessary, and improvements continue
- Many more interesting details of the analysis, see CERN IT seminar by D. Walter (MIT) for more

- Developments being leveraged more widely within CMS
- Some optimisations integrated upstream into ROOT (e.g., xrootd file reading) or planned for future

development (atomic histogram filling)
- Libraries or code can be used by other analyses (extended NanoAOD, luminosity counter)

- Performance and design considerations are highly relevant for the HL-LHC era
- Exact software solutions may change over time
- Core design considerations and principles that form the foundation of successful analysis today

will likely stay relevant

https://indico.cern.ch/event/1464211/

Kenneth Long

Backup

Kenneth Long 20

Kenneth LongKenneth Long 21

Hardware and resources
- The “analysis” (data processed into histrograms) step is executed locally

- No resubmission of failed jobs/ merging of jobs etc.
- Direct feedback on progress
- Heavily multithreaded

- Necessitates high performance machine with high availability
- High performance, high thread count machines (256/398/768 threads) at CERN, Pisa, MIT
- Reading/writing on fast NVMe SSDs
- Local or via network interface 100Gbit/s (e.g., from CERN eos via xrootd)

CERN MIT/Pisa MIT
CPU 2 EPYC 7702 2 EPYC 7702 2 EPYC 9965
cores 128 192 384
threads 256 384 768
memory 1TB 1.5/2TB 1.5 TB

- Sounds like a luxury that cannot be widely adopted but…
- Price/core is increasingly competitive with several low-core machines
- Can be seamlessly integrated into condor/slurm/etc cluster
- For future: DistRDF allows interactive-like running

https://arxiv.org/abs/2506.01958

