
Trigger Algorithms for Alignment and Calibration at CMS during LHC Run 3 **FPS** Marseille 2025

Philipp Nattland

For the CMS Collaboration

July 7th. 2025

GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung

Introduction: The CMS Trigger System

High-level Trigger (HLT)

- Software based, runs on computing farm at CMS (P5)
 - $\rightarrow\,$ equipped w/ CPU and GPU since 2022
- Access to full detector readout
- Selects events according to
 - HLT paths: Algorithms that reconstruct physics objects and apply selections on these
- Events are grouped into non-exclusive data streams based on HLT paths:
 - E.g. prompt physics, scouting, express
- Nominal rate $\mathcal{O}(10^3 \text{ Hz})$

Prompt Calibration Concept

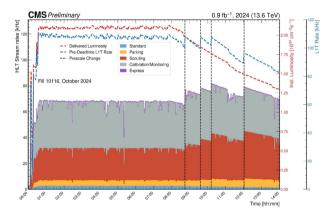
Reasons for low-latency calibrations

- Allows efficient online event selection by HLT
- Enables analysis of data within few hours from acquisition
- Reduces need for further processing

Concept

 Stream with very low latency (~ 1-2 h for Express, Calibration) used to calibrate physics streams with higher latency (~ 48 h)

Data Streams


- Prompt physics: main data stream for physics analysis
- Express: Low rate data selection for calibrations
- Calibration: Reduced event content for calibration ⇒ Allows for high rate
- Scouting: Reduced event content for high rate collection, with no offline reconstruction
- Parking: Events reconstructed, when resources available

Introduction

Data Streams

Prompt Calibration Loop

Data Streams

Figure: Rate of HLT output streams [CERN-CMS-DP-2025-015]

Data Streams

- Prompt physics: main data stream for physics analysis
- Express: Low rate data selection for calibrations
- Calibration: Reduced event content for calibration ⇒ Allows for high rate
- Scouting: Reduced event content for high rate collection, with no offline reconstruction
- Parking: Events reconstructed, when resources available

Introduction

Data Streams

Prompt Calibration Loop

Data Streams

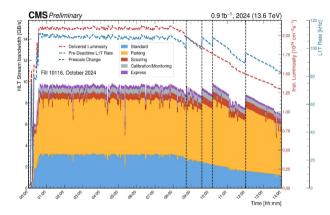
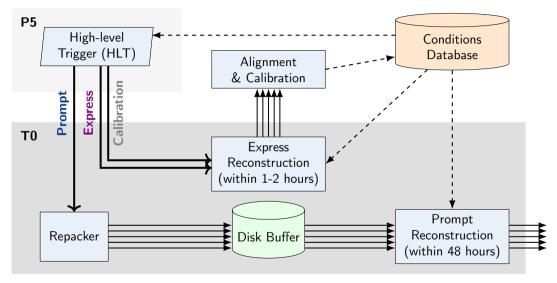


Figure: Bandwidth of HLT output streams [CERN-CMS-DP-2025-015]

Data Streams

- Prompt physics: main data stream for physics analysis
- Express: Low rate data selection for calibrations
- Calibration: Reduced event content for calibration ⇒ Allows for high rate
- Scouting: Reduced event content for high rate collection, with no offline reconstruction
- Parking: Events reconstructed, when resources available

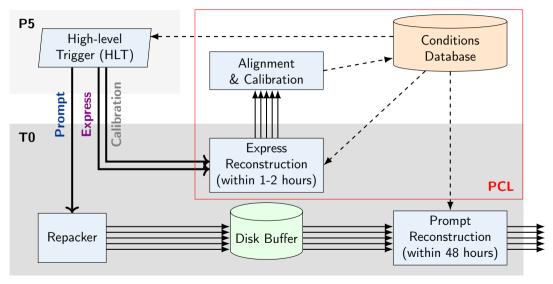
Introduction


Data Streams

Prompt Calibration Loop

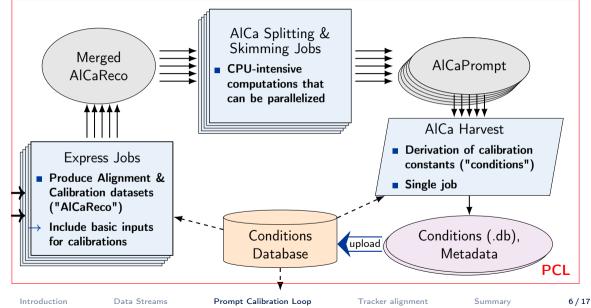
Tracker alignment

4/17



Introduction

Prompt Calibration Loop

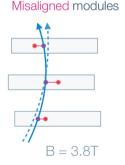

Introduction

Data Streams

Prompt Calibration Loop

Calibration workflows running in the PCL

- Beam spot calibration
 - Determination of 3D position and width of luminous region
 - Max. 1 fit per luminosity section (23.31 s)
- Silicon strip tracker calibrations
 - Hit efficiency monitoring, Identification of problematic channels
 - Determination of gains
- Silicon Pixel calibrations
 - Detemination of bad components
 - Lorentz angle calibration
 - Track-based alignment of silicon pixel detector
- Additional workflows:
 - ECAL crystal radiation damage monitoring, ECAL pedestal calibration
 - Pixel cluster counting luminosity measurement
 - PPS timing calibration


Calibration workflows running in the PCL

- Beam spot calibration
 - Determination of 3D position and width of luminous region
 - Max. 1 fit per luminosity section (23.31 s)
- Silicon strip tracker calibrations
 - Hit efficiency monitoring, Identification of problematic channels
 - Determination of gains
- Silicon Pixel calibrations
 - Detemination of bad components
 - Lorentz angle calibration
 - Track-based alignment of silicon pixel detector
- Additional workflows:
 - ECAL crystal radiation damage monitoring, ECAL pedestal calibration
 - Pixel cluster counting luminosity measurement
 - PPS timing calibration

Track-based Alignment

- Determine orientation, position and surface deformation of CMS tracker sensors
- \blacksquare Goal: Alignment precision $\sigma_{\rm align}$ of same scale as hit resolution $\,\sim\,\mathcal{O}(10\,\mu{\rm m})$
- After mechanical alignment: $\sigma_{\rm align} \sim \mathcal{O}(100\,\mu{\rm m})$
- $\Rightarrow\,$ With track-based alignment $\sigma_{\rm align}\,\sim\,\mathcal{O}(10\,\mu{\rm m})$

----- charged particle

- fitted trajectory
- predicted hit
- measured hit
- residual

Aligned modules

Introduction

Data Streams

Prompt Calibration Loop

Track-based Alignment

$$\chi^2(\boldsymbol{p},\boldsymbol{q}) = \sum_j^{\text{tracks}} \sum_i^{\text{hits}} \left(\frac{m_{ij} - f_{ij}(\boldsymbol{p},\boldsymbol{q_j})}{\sigma_{ij}}\right)^2$$

 m_{ii}, f_{ii} : measured and predicted hit position

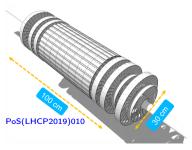
p, q: alignment and track parameters

Introduction

Data Streams

Prompt Calibration Loop

Low Granularity (LG) PCL alignment



- Alignment of large structures (HLS) of the pixel detector
 - 2 BPIX half-barrels, 4 FPIX half-cylinders, 6 dof \rightarrow $6 \times 6 = 36$ parameters
- MillePede 2 Plana algorithm runs in the Prompt Calibration Loop (PCL) at Tier-0
- Uses only Minimum Bias data (i.e. minimal trigger requirements)
- Alignment automatically updated, if movements significant
- Usefull to correct shifts of HLS e.g. after magnet cycles

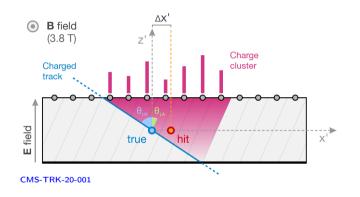
CERN-PHO-2021-133-1

2012.14304

Prompt Calibration Loop

Tracker alignment

Summary

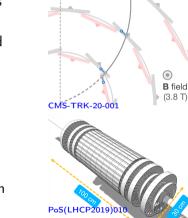

Radiation Damage and Lorentz Drift

Lorentz drift

- Electron-hole pairs affected by strong B field
- Drift angle depends on electric field and on mobility of the charge carriers
 - ⇒ Affected by radiation damage
 - $\Rightarrow \text{ Shift direction } \Delta x' \text{ depends} \\ \text{ on direction of electric field} \\$

- Radiation damage affects Lorentz angle, which shifts reconstructed hit position
- Alignment can artificially correct this effect by changing position of modules

Introduction


Prompt Calibration Loop

⇒ Continuously correct for Lorentz drift effects using alignment

- Needs high granularity to correct in/outward facing modules separately
- Change from HLS-based to ladder/panel-based alignment
- $\Rightarrow\,$ Increase free parameters from 36 to ~ 5000
- HG PCL was first activated in 2022
- Uses MinBias events only (trigger paths with minimal requirements, total rate $\sim 80 \, {\rm Hz}$)

Run 3: High Granularity (HG) PCL alignment

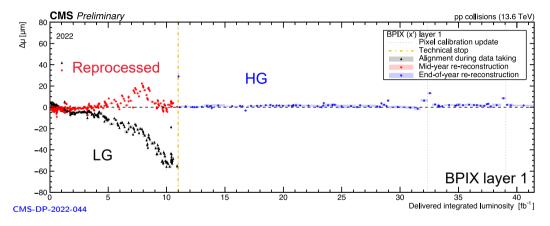
Large radiation damage effect during Run3

wrong LA

correct LA

Iresidual > 0

Tracker alignment


Introduction

Prompt Calibration Loop

Distribution of Median Residuals Trends 2022

 \Rightarrow HG PCL alignment corrects radiation effect successfully

 $\Rightarrow\,$ Tracker alignment in PCL is instrumental for precise prompt reconstruction

Introduction

Data Streams

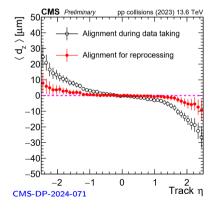
Prompt Calibration Loop

Tracker alignment

Summary

13/17

HG PCL Alignment Bias



- Many more parameters than LG alignment (\sim 5000 vs 36)
- $\Rightarrow\,$ Cannot be fully constrained by MinBias dataset
- \Rightarrow "weak modes", i.e. bias introduced in some variables, e.g. $d_z(\eta)$

Primary Vertex (PV) validation: d_z vs η

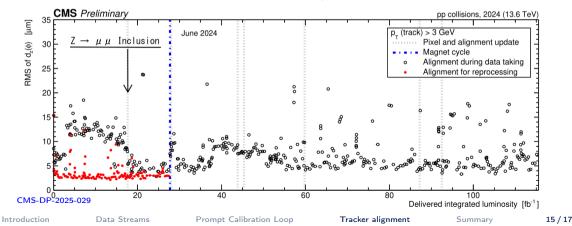
- PV reconstruction driven by pixel detector
- Validation: Redetermine PV without track of interest
- *d_z*: Longitudinal distance between track and redetermined PV
- \blacksquare Expect distribution of mean d_z vs track $\eta,\,\phi$ to be flat

Introduction

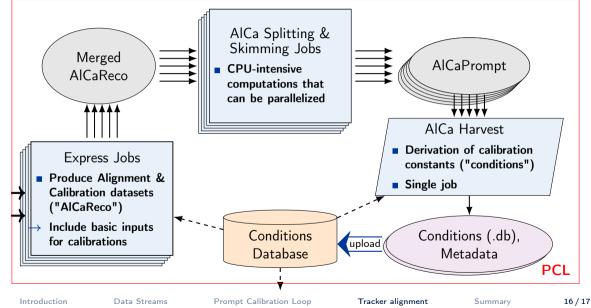
Data Streams

Prompt Calibration Loop

Tracker alignment

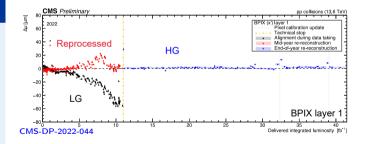

Summary 14 / 17

HG PCL Alignment Bias


Inclusion of $Z ightarrow \mu \mu$ data

- \blacksquare Z bosons often produced with little boost \Rightarrow can correlate opposite ends of tracker
 - ⇒ Try to reduce bias by performing alignment on MinBias and $Z \rightarrow \mu\mu$ tracks (Trigger paths requiring a.o. two muons, rate ~ 5 Hz)

Summary



Low Latency Calibrations

- Enable efficient HLT triggering
- Essential for precise prompt physics reconstruction

Radiation Damage in Run 3

- Calibration workflows in PCL needed adaptation
- High granularity tracker alignment allows for corrections of Lorentz drift due to radiation damage

Prompt Calibration Loop

Tracker alignment

Summary

Backup

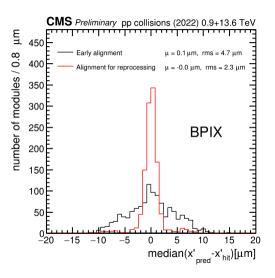
Introduction

Data Streams

Prompt Calibration Loop

Tracker alignment

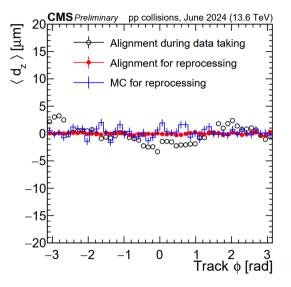
Summary


17 / 17

Distribution of Median Residuals

DMR validation

- Refit track without hit of interest
- Measure distance between measured hit and prediction by the fit wrt local module coordinates (denoted x' etc.)
- Calculate the median of these residual distributions for each module
- $\Rightarrow \text{ Uncorrected Lorentz drift leads} \\ \text{to shift in } \mu \text{ of DMR between} \\ \text{in/outward facing modules} \\ \end{cases}$



Summary

HG PCL bias: $d_z vs \phi$

Introduction

Data Streams

Prompt Calibration Loop

Tracker alignment

Summary 17 / 17