

Tracking and PID performance with the upgraded LHCb detector

Giovanni Cavallero

INFN Ferrara

On behalf of the LHCb collaboration

EPS-HEP 2025 6-11 July 2025, Marseille, France

Outline

- Overview of operations in 2024
- Performance of LHCb subdetectors
 - Several numbers shown in these slides rely on alignment and calibration procedure described in <u>Miguel's talk</u>
- Tracking, PID and global LHCb performance in 2024
 - Most of the performance figures of merit shown in this talk refer to nominal Run 3 luminosity of $\mathcal{L} = 2 \cdot 10^{33} \ cm^{-2} \ s^{-1}$ in pp collisions

The upgraded LHCb detector

- Tracking system (VELO, UT, SciFi) newly constructed
- Hadron identification (RICHes): new photondetection chain and RICH1 optics/mechanics
- New luminometer (PLUME) and gas injection system (SMOG2)
- Frontend and backend electronics upgraded for all systems (including CALO and MUON)

The upgraded LHCb experiment

- Make effective the 5x increase in the instantaneous luminosity by removing the hardware level trigger
 - Avoid saturation in fully hadronic channels: expect 2x gain in trigger efficiency
- Key concept: triggerless readout of all subdetectors at the 40 MHz LHC bunch crossing rate
 - new subsystem specific ASICs as frontend electronics compliant with GBT architecture
 - new TFC (deterministic and fixed phase clock at $\sigma \sim 200 \ ps$) and DAQ systems implemented on FPGAs installed on PCIe40 cards
 - new Event Builder (EB) farm with 163 servers
- Enables the implementation of a full-software trigger in heterogenous architecture: GPU (HLT1) + CPU (HLT2)
 - Initially 2 GPUs/EB server (+1 GPU/EB server during 2024)
 - See <u>Dorothea's talk</u> for more details on the trigger system

[JINST 19 (2024) 05, P05065]

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Overview of 2024 operations

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Data-taking in 2024

- Data-taking before first LHC Technical Stop (TS1) partially dedicated to
 - recover from 2023 LHC vacuum incident in the VELO volume, gradually include the UT in the global data taking and fix residual frontend instabilities
 - commission final HLT1, HLT2, alignment and calibration configurations
 - physics data-taking at $\mathcal{L} = 1.3 \cdot 10^{33} \ cm^{-2} \ s^{-1}$
- Most of post-TS1 luminosity collected at $\mathcal{L} = 1.7 \cdot 10^{33} \ cm^{-2} \ s^{-1}$
 - moved to nominal $\mathcal{L} = 2.0 \cdot 10^{33} \ cm^{-2} \ s^{-1}$ during the last weeks of pp-physics
- Incremental improvements during the year in track reconstruction and alignment quality

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Dataflow and offline data processing

- Factor 30 increase in data rate (5x luminosity, 3x event size, 2x trigger efficiency)
- Sprucing performs data skimming, slimming and streaming to allow write to disk
- TURCAL stream contains selection lines for physics channels used for detector calibration and to assess performance
 - Factor 8 reduction by Sprucing
 - Line by line customisation of persisted reconstructed objects and detector raw banks
- Concurrent Sprucing and centralised Analysis Productions allowing analysts to begin analysing data with only 2-3 days of latency

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Operations in 2024

- Collected more than Run 1+2 pp-physics in a single year
- Record PbPb and proton-gas integrated luminosities
- >92% of 2024 data flagged OK for data analysis
 - >99% towards the end of the year

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Performance of subdetectors

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Luminometers

[LHCB-TDR-022]

- New dedicated luminometer (PLUME) to provide online feedback to the LHC on LHCb instantaneous luminosity => crucial for levelling procedure with a tolerance of $\pm 5\%$
- Beam-background measurements provided by custom BCM and RMS subsystems
- About 350 luminosity counters to assess the integrated offline luminosity of a dataset
 - Information attached to each stream by the Sprucing
 - Nice agreement between counters after preliminary van der Meer scan analysis
- More details in Fabio's talk

Tracking and PID performance at LHCb UI

Giovanni Cavallero

VELO

- 52 modules for a total of 41M 55 $\mu m \times 55 \mu m$ silicon pixels whose signal is readout by the custom VeloPix ASIC [LHCB-TDR-013]
 - First sensitive pixel position at 5.1 mm from the beamline
- Combined sensor and ASIC clustering efficiency above 99% in average
 - Consistent performance at $\mu = 4.4$ ($\mathcal{L} = 1.7 * 10^{33} cm^{-2} s^{-1}$) and $\mu = 5.3$ ($\mathcal{L} = 2.0 * 10^{33} cm^{-2} s^{-1}$)
- Average residual between a track intercept and the cluster position consistent with expected hit resolution of $\sim 13~\mu m$
- Vertexing capabilities assessed through the impact parameter (IP) of Drell-Yan muons

UT

- 4 planes of silicon-strip detectors each containing 4 types of sensors to match detector occupancy and readout by the custom SALT ASIC [LHCB-TDR-015]
- Biased residual distribution showing a hit resolution of $\sim 50 \ \mu m$
- Signal well separated from noise
 - Zero-Suppression (ZS) threshold at ≥ 4 ADC counts
- UT helps in reducing "ghost" tracks: more details in Wojciech's talk

Giovanni Cavallero

July 8, 2025

Tracking and PID performance at LHCb UI

SciFi

- Three stations (T1, T2 and T3) each containing four layers of scintillating fibres mats: over 10^4 km of 250 μm diameter scintillating fibres whose light is readout by SiPM + custom PACIFIC ASIC [LHCB-TDR-015]
- Hit efficiency for non-edge channels of the innermost modules is \sim 99%
- Biased residual distribution showing a hit resolution of $\sim 80 \ \mu m$
- SiPM dark count rate kept under control by cooling at $-50\,^{\circ}C$

Tracking and PID performance at LHCb UI

Giovanni Cavallero

July 8, 2025

13

RICHes

- Two Ring Imaging Cherenkov detectors equipped with 64 channels Multi-Anode Photo-Multiplier Tubes readout by the CLARO ASIC [LHCB-TDR-014]
- Unbiased detected peak occupancy of 20% at the 30 MHz colliding bunch rate
- Single photon resolution of ~ 1.1 mrad (RICH1) and ~ 0.6 mrad (RICH2)

Tracking and PID performance at LHCb UI

Giovanni Cavallero

CALO

- Shashlik calorimeters with PMT readout kept from Run 1 and 2 [LHCB-TDR-014]
- Calibration performed using dedicated LED and low-multiplicity data-taking to scale the energy calibration on the known π^0 mass by adjusting high-voltage settings
- Performance (resolution) affected by pile-up interactions according to expectations

Tracking and PID performance at LHCb UI

Giovanni Cavallero

July 8, 2025

15

MUON

- Four stations (M2,M3,M4,M5) each segmented in four regions [LHCB-TDR-014] (R1,R2,R3,R4) of decreasing readout granularity from the beam-pipe
 - Four-gap MWPC with Ar: CO_2 : CF_4 mixture (38:57:5) kept from Run 1 and 2 but from increased readout granularity of the inner region
- ≥ 99% hit efficiency achieved allowing efficient muon identification based on coincidence requirement [LHCB-FIGURE-2024-029]

Tracking and PID performance at LHCb UI

Giovanni Cavallero

July 8, 2025

16

Global performance

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Global performance assessment

- Global performance figures of merit are determined through data-driven methods using the dataset available in the TURCAL stream
 - tag-and-probe method employing $J/\psi \rightarrow l^+l^-$ detached (from-b) decays used to determine tracking efficiency, momentum resolution for long tracks and lepton identification performance
 - charged hadron performance assessed by using decays that can be selected by purely kinematic means, e.g. $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ and $\Lambda \rightarrow p \pi^-$

[LHCB-FIGURE-2023-019]

Tracking performance: efficiency

• VELO tracking efficiency: use the information from the UT, SciFi and MUON stations (probe) and match to a fully reconstructed long track (tag)

Nmatched ϵ_{track} $N_{matched} + N_{unmatched}$ [LHCB-FIGURE-2024-032] Unmatched J/w Candidates Matched J/ ψ Candidates Velo tracking efficiency $\times 10^3$ ×10² [%] (100 ∋ Candidates / (3.5 MeV*k*²) LHCb preliminary 2024 LHCb preliminary 2024 — 2024 data ---- 2024 data Velo tracking efficiency Velo tracking efficiency Fit Model Signal Fit Model Background Signal Background 90 85 --- 2024 data Downstream method 80 → 2024 simulation LHCb preliminary 2024 75^L 20 40 60 80 100 120 140 3000 3100 3200 3200 $p\,\mu_{\text{probe}}\,[\text{GeV/c}]$ 3000 3100 $M_{\mu^{+}\mu^{-}}$ [MeV/*c*²] $M_{\mu^{+}\mu^{-}}$ [MeV/*c*²]

Tracking and PID performance at LHCb UI

Candidates / (3.5 MeV*l*c²) 6 8 8 8 8 8

20

Giovanni Cavallero

Tracking performance: resolutions

- PV resolution better than Run 2
- Momentum resolution determined fitting the $J/\psi \rightarrow \mu^+ \mu^-$ invariant mass in bins of momentum: between 0.4% and 1.1%

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Hadron identification performance

- Better RICH performance at typical Run 3 event multiplicity than in Run 2 already obtained in 2022
- Excellent hadron identification in the full range of momentum
- Expected degradation with increased event multiplicity kept under control

21

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Charged lepton identification performance

- Global electron identification efficiency as a function of the pionelectron mis-identification probability depends on the electron energy correction for bremsstrahlung losses
- Muon identification: at efficiencies > 90% the proton-muon misidentification rate is below one per mille
 - Similar mis-identification rates for decays in flight of pions and kaons to muons

22

Tracking and PID performance at LHCb UI

Giovanni Cavallero

Global performance

- Illustrated by $b \rightarrow h^+h^-$ decays, where the parent particle is B^0, B_s^0 or Λ_b^0 and $h = \pi, K, p$
- Invariant mass of the decays, depending on the mass hypothesis for the final state hadron, shows excellent resolution and particle identification

Highlights of performance in other collision systems

- Larger gas pressure thanks to the new SMOG2 cell
 - In 2024 injected hydrogen, deuterium, helium, neon and argon simultaneously to pp data-taking
- Also took PbPb, PbNe and PbAr collisions

Tracking and PID performance at LHCb UI

July 8, 2025

24

Giovanni Cavallero

Conclusions

- LHCb experiment brought to nominal luminosity operations in 2024
- Thanks to the huge commitment of the whole LHCb community, advanced automation of operations and the excellent LHC performance in 2024, LHCb collected and processed about 10/fb in a single year
- All subdetectors reaching or surpassing the performances of their Run 1 and 2 predecessors in a harsher environment
- Ambitious and challenging triggerless readout at 40 MHz, enabling an innovative fully-software trigger system, together with online alignment and calibration procedures, working in full steam
- LHCb upgrade concepts fully demonstrated => ready to unleash state-ofthe-art flavour physics measurements (and beyond) at the LHC

