The upgraded LHCb trigger system

Dorothea vom Bruch CPPM, Aix-Marseille Université, Marseille, CNRS/IN2P3

On behalf of the LHCb collaboration

EPS-HEP 2025 July 7th 2025

The LHCb trigger challenge

LHCb Run 3 Upgrade

- Five times higher luminosity: 2x10³³ cm⁻²s⁻¹
- Increased pileup to $<\mu> \approx 5$

EPS-HEP, Upgraded LHCb trigger system, D. vom Bruch, 07/2025

- Replacement of all tracking detectors
- Removal of hardware trigger

Z

- Fully new readout electronics to read out 40 Tbit/s
- Charged particle reconstruction at 30 MHz in the full detector is necessary

EPS-HEP, Upgraded LHCb trigger system, D. vom Bruch, 07/2025

LHCb-FIGURE-2020-016

Heterogeneous computing system

- Raw detector data is received by FPGA cards
- 163 event builder servers aggregate data from sub-detectors
- Each server hosts 3 GPU cards on which HLT1 is run
 - Around 500 Nvidia A5000 in total
- Output of HLT1 is stored on storage servers while alignment & calibration is processed
- HLT2 is processed on computing farm with 250k CPU • cores

What do we reconstruct in the High Level Trigger (HLT)?

EPS-HEP, Upgraded LHCb trigger system, D. vom Bruch, 07/2025

Vertices

Cherenkov rings

How does the HLT map to GPUs?

Characteristics of LHCb's HLT

Intrinsically parallel problem: Process collisions and objects in parallel

Huge compute load

Full data stream is read out \rightarrow No stringent latency requirements

Small raw event data (~100 kB)

Characteristics of GPUs

Suited for:

- Data-intensive parallelizable applications
- High throughput applications

Many TFLOPs available

Higher latency than CPUs Not as predictable as FPGAs

- Connection via PCIe \rightarrow limited I/O bandwidth
- Thousands of events fit into O(10) GB of memory

Design of the Allen GPU HLT1

- Do all work on the GPU •
 - Minimise copies to/from the GPU •
- Parallelise on multiple levels •
- Maximise GPU algorithm performance •
 - Design software framework to optimise algorithm throughput performance •
 - Interleave ML/AI and classical algorithms •
 - Single precision only •
- Execute on multiple compute architectures
- Simple event model

HLT1 reconstruction

Many algorithms beyond TDR design:

- Additional long track reconstruction method
 - Gained 20% efficiency at pT = 500 MeV
 - Robust with respect to detector occupancy
- Downstream track reconstruction

Long tracks from b-hadrons in HLT1

Ecal & Jet reconstruction

Kalman filter with parameterised scattering errors and transport through the magnetic field (since 2025)

HLT1 performance on 2025 data

LHCb-FIGURE-2025-xxx

- Heterogeneous software trigger has been a full success
- HLT1 trigger performance greatly surpasses TDR goals set in 2014 and 2020

See also: <u>« BuSca: New strategies for LLP</u> Searches at 30 MHz at LHCb », J. Zhuo,

Real-time alignment and calibration

LHCb-FIGURE-2024-037

HLT2 reconstruction

EPS-HEP, Upgraded LHCb trigger system, D. vom Bruch, 07/2025

See also: Tracking and PID performance with the upgraded LHCb detector, G. Cavallero, Tue 8.7., T12

10
GB/s

ets	
eks)
rtices)
tracks)
cks)
KS)
cks)
n tracks)
tream and tracks, s from V ₀	
tracks)
rged π_{\circ} , ns	
)
))
correction)
PID)
PID)
rob)

HLT2 persisted output

Three levels of persistency

- Turbo: Save only information related to signal candidate reducing event size by a factor 10
- Selective persistency: Save additional objects
- Full persistency

Combined HLT1 & HLT2 performance on 2025 data

EPS-HEP, Upgraded LHCb trigger system, D. vom Bruch, 07/2025

The LHCb trigger challenge in Upgrade 2 (LHC Run 5)

x86 only	x86 only	x86 & GPU		
Offline reconstruction & calibration required	Quasi real-time analysis quality reconstruction & calibration	Quasi real-time analysis quality reconstruction & calibration		
$4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$		$2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$		
La character three the second market	A ward a first the second and the strength of the second s	Runs 3/4		
Run 1	Run 2	Runs 3/4		
Run 1	Run 2	Runs 3/4		
Run 1 Heavy ions	Run 2 Heavy ions	Runs 3/4 Heavy ions		

pp analysis-level performance at same level, despite higher pileup

The path towards processing 25 TB/s

- Only currently viable option is to process the full reconstruction on GPUs
- Best suited architecture to process thousands of selections still to be determined
- Split (or no split) between HLT1 and HLT2 still to be determined
- R&D to be carried out over the next years
- Plan to adapt Allen and Gaudi software frameworks to cope with these challenges
- ML/AI techniques will become increasingly important for reconstruction, classification, selection
- HEP-specific challenge: Fast inference at 30 MHz on GPUs, FPGAs and emerging technologies

EPS-HEP, Upgraded LHCb trigger system, D. vom Bruch, 07/2025

LHCb Upgrade 2 trigger can act as technology driver and catalyst for FCC-ee experiments

Summary

- LHCb has revolutionised its trigger system in Run 3 to use a fully software system based on GPUs and CPUs
- Allen framework has enabled HLT1 to go far beyond the original TDR design
 - Allen provides generic tools for high-performant processing on heterogeneous architectures
- HLT1, alignment & calibration, HLT2 achieved expected performance in 2024
 - Surpassed Run 2 performance in many cases
- Next challenge: LHCb Upgrade 2 with 25 TB/s to process
 - Will leverage our experience with heterogeneous software systems to process the full ٠ reconstruction on GPUs
 - Also keep flexibility to explore emerging technologies
- LHCb Upgrade 2 trigger can act as technology driver for FCC-ee experiments

Backup

EPS-HEP, Upgraded LHCb trigger system, D. vom Bruch, 07/2025

The Allen software framework

- Named after Frances E. Allen
- Hosted on giblab: <u>https://gitlab.cern.ch/lhcb/Allen</u>
- Documentation pages: <u>https://allen-doc.docs.cern.ch/index.html</u>
- Built with CMake
- Single source code, runs on CPU and GPU (Nvidia and AMD)
 - Portability between architectures provided by macros and few simple coding guide lines •
- Standalone build and integrated with LHCb software stack
- Memory manager
- Multi-event scheduler
- Configuration via python
- Monitoring for development and data-taking
- Geometry loaded from <u>DD4Hep</u>, converted to simple structs for easy use on GPU

·		

LHCb-FIGURE-2020-016

Allen: Memory management and algorithm scheduling

CPU

- Few strong cores
- Suited for serial workloads
- Quick access to large system memory

GPU

- Many weaker cores
- Suited for parallel workloads
- Limited memory on card

GPU challenges

- Fit workload into limited memory resources
 - Allen uses count first write later model •
 - Only allocate as much memory as needed
 - Allen provides memory manager and algorithm scheduler •
 - Only keep objects in memory for as long as needed
- Sufficient parallelisable work to utilise compute cores
 - In Allen, every algorithm processes many collision events in parallel
 - « Multi-event scheduler » in Allen generates static sequence of algorithms to be processed using event masks

Allen: Versatile and scalable user interface

Users

Developers

