Fast Pile-Up Jet Rejection in the ATLAS HLT Using the $DPz^1 + MLPL^2$ Approach

Deep-sets model leveraging Impact Parameter information to regress jet's origin along the beamline z-axis

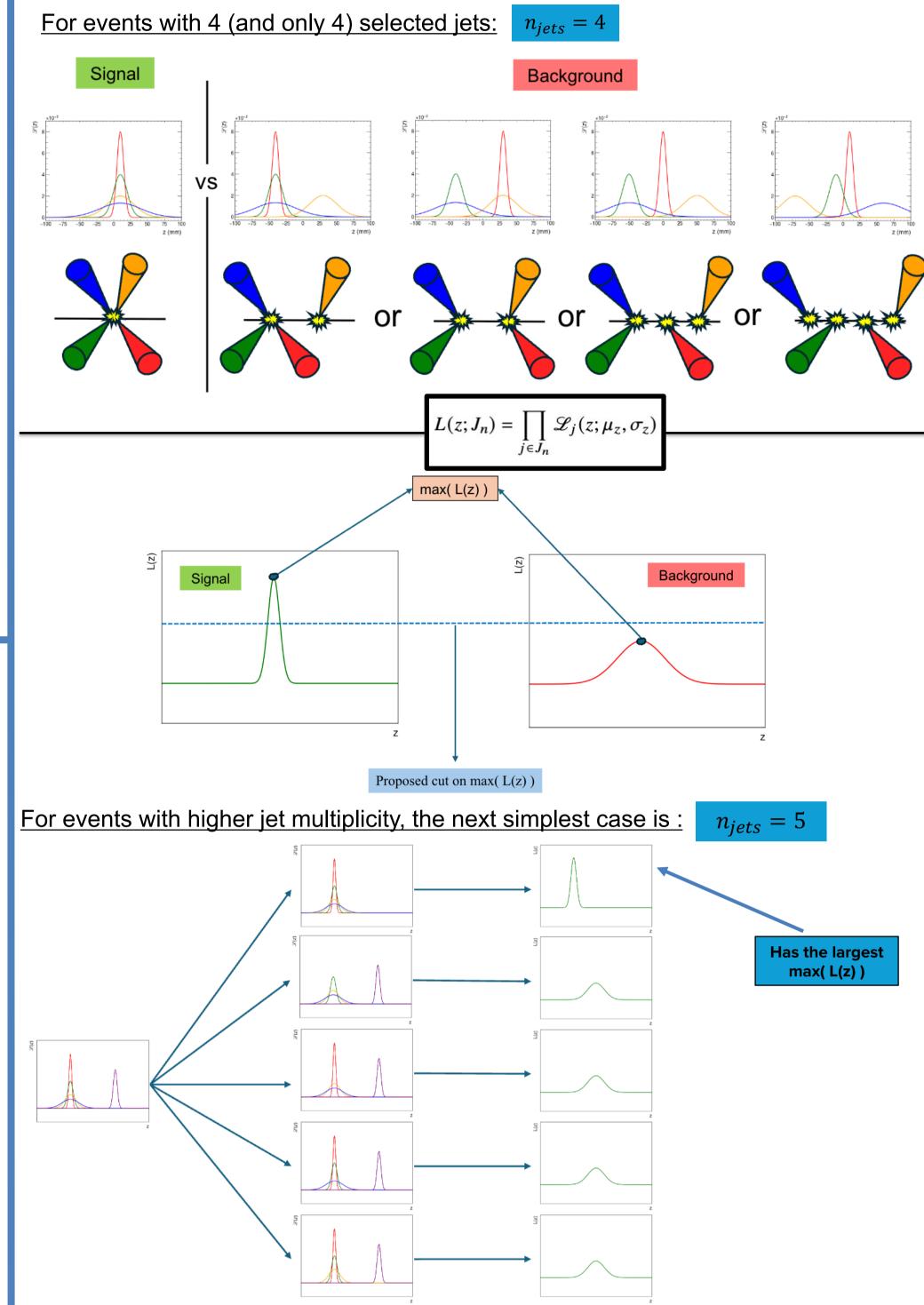
⁴Maximum Log Product of Likelihoods discriminant variable for event-level pile-up rejection

DIPz Inputs and Training

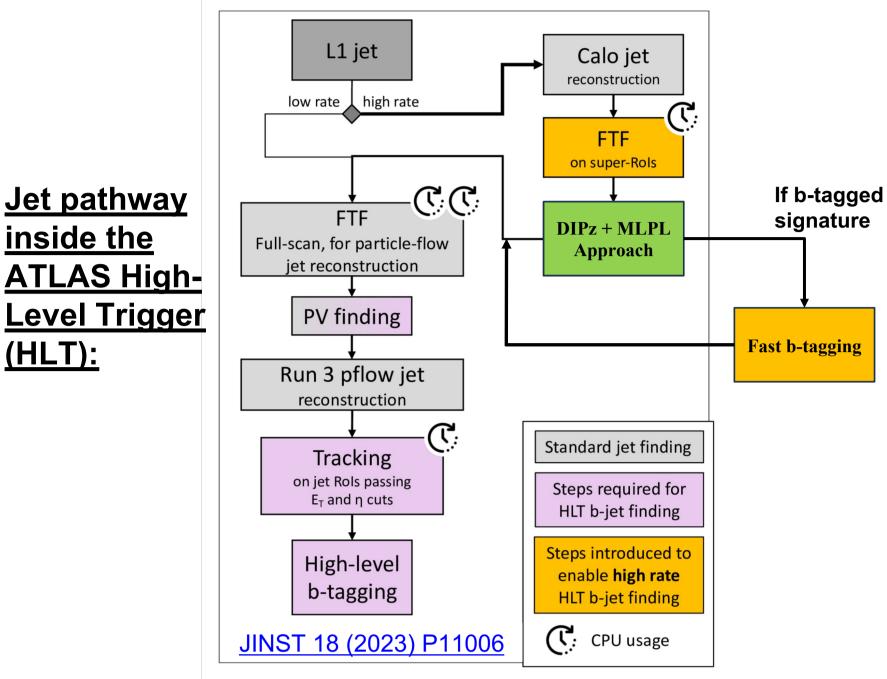
- Jets inputs: Jet's transverse momentum and pseudo-rapidity
- Track inputs:

Track Feature	Description
<i>p</i> _T	Transverse momentum
d_0	Distance of closest approach of track to the beamline in the transverse
	plane
z_0 relative to beamspot	Displacement between beamspot center and closest approach to the
	beamline, projected along beamline
$\Delta\eta$	Pseudorapidity of track relative to jet η
$\Delta \phi$	Azimuthal angle of track relative to jet ϕ
q/p	Track constituent particle charge divided by its momentum
q/p χ^2	$\sum_{\text{hits on track}} (r/\sigma_r)^2$, where $r \equiv$ hit residual, $\sigma_r \equiv$ residual uncertainty
number DoF	Number of degrees of freedom in track fit

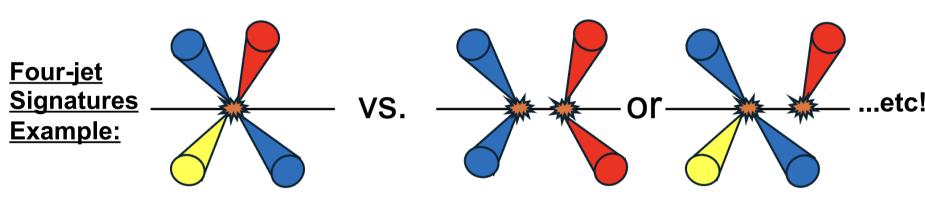
The training is performed using 3 million jets (with a separate validation set of



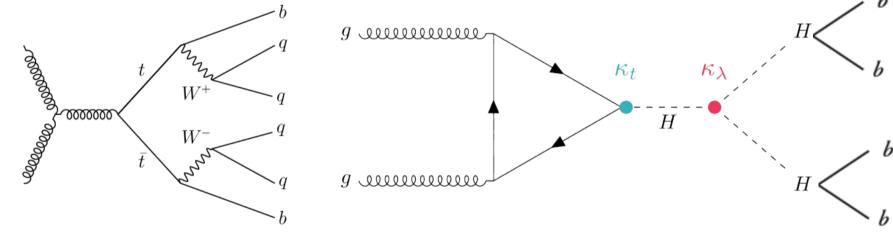
Motivation



- CPU difficulties → Running full-scan FTF (Fast Track Finding) on all the interesting jet events that pass L1 is computationally infeasible
- Background events (events that contain pileup jets) are reducible if we can quickly identify and remove them before full-scan FTF
- Fast b-tagging to pre-select events provides a nice mitigation to such problem for b-tagged jet signatures, but:
 - Can we do better?
 - What about other flavour-agnostic jet signatures?

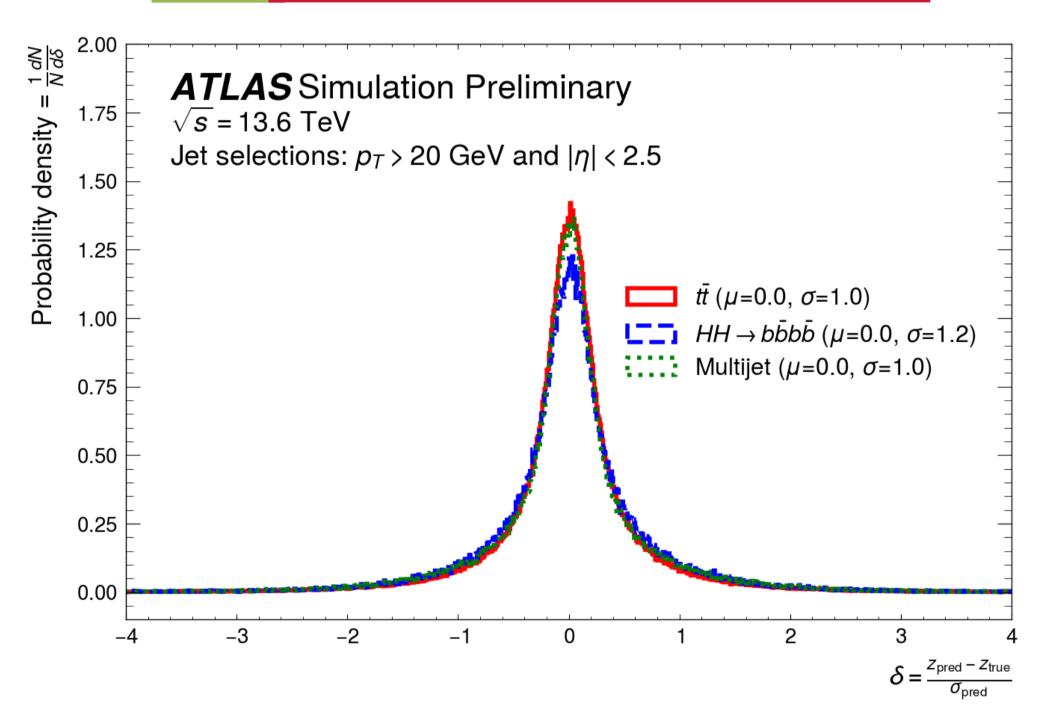


Target signatures with a high jet multiplicity

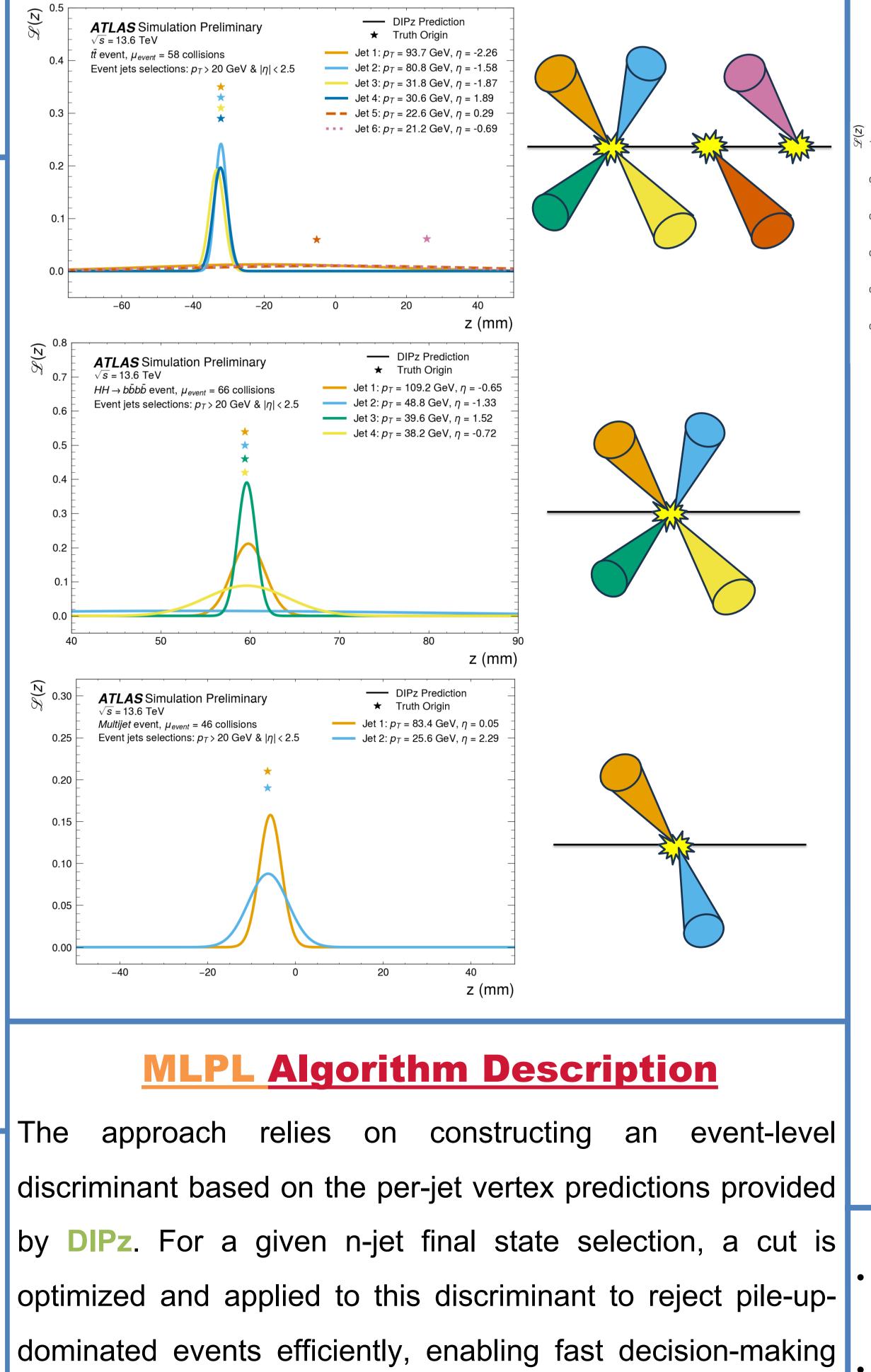


600,00 jets) from simulated top-pair production events from proton-proton collisions at a centre-of-mass energy of 13.6 TeV

DIPz Regression Performance



DIPz Event Displays



•MLPL(<u>n,m</u>): Maximum "over the combinations of <u>n</u> jets" of the maximum of the Log of the Product of the Likelihood functions of the <u>m</u> highest pT jets in the event.

MLPL Algorithm Performance

Four-	jet	Si	g	<u>1a</u>	
candidate					

Four-jet Background

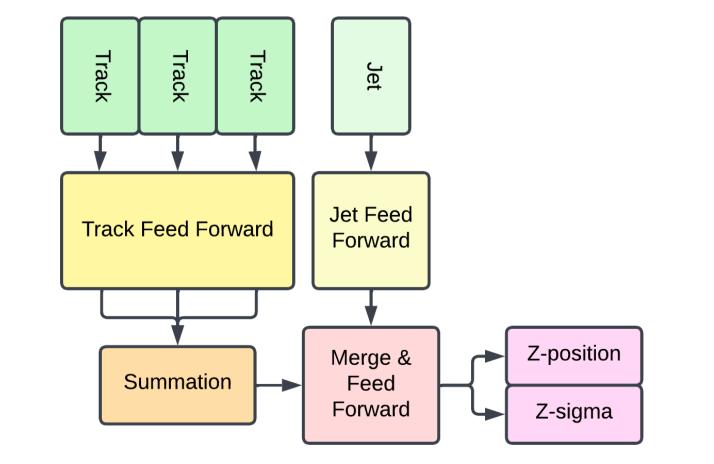
DIPz Architecture

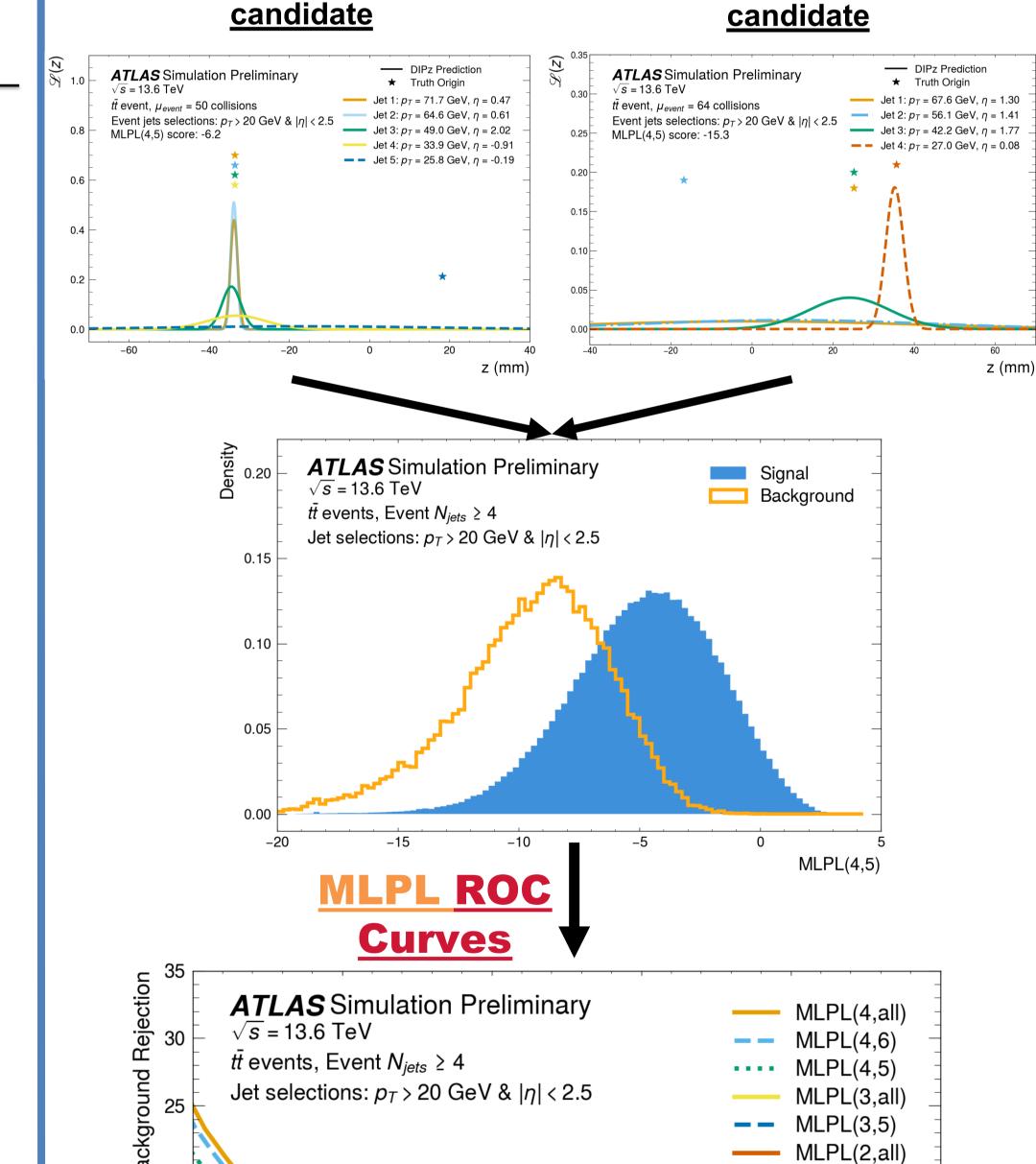
DIPz is an uncertainty-aware ML model that leverages the permutationinvariant Deep Sets architecture and uses Impact-Parameter information as inputs to regress a jet's vertex beamline **z**-position, summarized formally as:

$$z_{pred} = F\left(\Phi_{jet}(j) \oplus \sum_{i=1}^{n} \Phi_{track}(t_i)\right)$$

Where:

- t_i : feature vector of the *i*-th track,
- j: vector of jet-level features;
- Φ_{track} : shared feed-forward network applied to each track;
- Φ_{jet} : feed-forward network applied to jet features;
- $\sum_{i=1}^{n} \Phi_{track}(t_i)$: sum over all processed tracks (Deep Sets aggregation)
- ⊕ : concatenation operator (applied for the jet and track latent representations);
- F: post-merge feed-forward network that predicts the vertex z-position and uncertainty;
- z_{pred} : two predicted quantities μ_z and σ_z

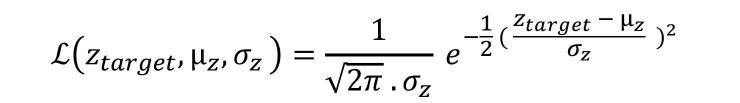




DIPz Loss Function

Loss $(z_{target}, \mu_z, \sigma_z) = -\log(\mathcal{L}(z_{target}, \mu_z, \sigma_z))$

derived from the Gaussian likelihood "L":



within tight latency constraints.

Deployed at Point 1, it is used in taking ATLAS collision data, optimizing chains targeting multijet signatures in 2025

Final Remarks

The DIPz + MLPL approach has been implemented in the

70

Mohammed (Mo) Abdelrazek Aboelela (mo.abdellrazekk@cern.ch) On behalf of the ATLAS Collaboration Scan for public results

60

ATLAS trigger system software

ഷ് 20

90

Signal Efficiency (%)