
CMS FlashSim:
how ML powers end-to-end simulation in HEP

Francesco Vaselli
On behalf of the CMS Collaboration

The future demands for simulations pose new
challenges

Already in Run3, some
analysies are limited by the
statistical uncertainties due to
limited simulated samples

This will be a major issue for
High-Lumi LHC; on top of these
upgrades: increased granularity
of CMS Phase 2 Detector

2

Conventional CMS Simulation
● Generation: production of particles

using theoretical calculations (e.g.
MadGraph)

● Detector simulation: propagation
through each element of the detector
(GEANT4)

● Digitization of the energy deposits and
reconstruction algorithms

● Data processing to build different data
formats

~50% of available CPUs used for these steps
(CMS)

3
From 2402.13684

CMS FlashSim

4

FlashSim― Universal, ML-based, end-to-
end simulation framework

● targeting directly analysis-ready high-
level variables (NANOAOD)

● using state-of-the-art generative
models

● simulation speed ~100 Hz:
x(100/1000) faster than FullSim

● analysis and sample independent

Conditioned detector response

The goal is to learn a universal detector response; we must consider all the information correlated to the
reconstruction

5

Generator-level Electron Reconstructed Electron (NANOAOD)

P(x | conditioning)

Electron pT,η,φ, … Gen-level Electron pT,η,φ, …

Output pdf

Multiple objects simulation

6

Single model for each object

● trained on existing FullSim dataset
● smaller models (~2M parameters)
● more control on the physical information

used as conditioning

We must consider all possible sources

● because of errors and pileup, fake objects
are reconstructed

● e.g. electrons originated from energy
deposits of particle jets

The simulation of objects is informed by what we
simulated before, the output of a module can be
the input of the next one (e.g. egamma)

Physics objects Sources (one NN model for each source) Number of simulated
attributes per object

Jets Generator Jet Fake from PU 39

Muons Generator Muons Fake from Jets/PU Duplicates 53

Electrons Generator Electrons Generator Photons
(prompt) Fake from Jets/PU 48

Photons Generator Photons
(prompt) Generator Electrons Fake from Jets/PU 22

MET GenMET and HT 25

FatJets Generator AK8 Jets 53

SubJets Generator AK8 SubJets 13

Tau Reconstructed Jets with
a Tau RecoJets without a Tau 27

Secondary Vertices Jets with Heavy Flavour Light Jets Taus 16

Non MET scalars (e.g.
PV)

Various event level
inputs 16

FSRPhotons GenMuon/RecoMuon 6

The final structure combines two modules

Trained on 4M events samples soup

Each object is handled by FlashSim with
the various models:

An efficiency model for each source

A properties/simulation model for each
source

Reconstructed
Muons

Generator
level prompt

Muons
Hadron

decays in jets

mu1

mu2

mu3

genmu1

genmu2

genmu3

jet1
jet2
jet3
jet4
jet5

7

We model the efficiencies with a basic NN

Efficiency = PRECO (pT,η,ϕ,...)

8

y ~ unif([0,1))

isReco = DNN(inputs) > y

We must decide whether to
simulate a given object!

GEN +
EXTRA MODEL PRECO

We can get new samples from a
complex multi-dimensional
distribution starting from
Gaussian noise

Achieved by applying an
invertible transformation to the
Gaussian samples

We use Continuous Flows trained
with Flow Matching for optimal
performances

Normalizing Flows as backbone

9

training

sampling

Good 1d performance on different plots

10

The same model should learn to
produce different distributions for
different conditioning values
(momentum of a particle, flavour of
the quark producing a jet, decay
mode of a particle, etc…)

Good capturing of correlations between different
variables

11

Analysis level performance
Once full NANOAOD events are available we
can compare derived quantities and implement
some analyses
Two toy analyses corresponding to VBF Higgs to
muons search and ZH→ llbb have been tested
comparing flashsim with fullsim
Analyses tested all the way down to the final
DNN output, comparing different samples, some
never seen during training

12

Analysis level performance
Once full NANOAOD events are available we
can compare derived quantities and implement
some analyses
Two toy analyses corresponding to VBF Higgs to
muons search and ZH→ llbb have been tested
comparing flashsim with fullsim
Analyses tested all the way down to the final
DNN output, comparing different samples, some
never seen during training

Selection

Muons pT > 20 GeV, |η| < 2.4,
Iso < 0.25, MediumID

Jets pT > 25 GeV, |η| < 4.7,
puId > 0, jetId > 0

Signal
Region

115 GeV < m(ll) < 135 GeV pTj1 > 35
GeV ,

pTj2 > 25 GeV , m(jj) > 150 GeV ,
|Δη(jj)| > 2

VBF H→ mumu

VBF H→ mumu

VBF H→ mumu

13

Analysis level performance
Once full NANOAOD events are available we
can compare derived quantities and implement
some analyses
Two toy analyses corresponding to VBF Higgs to
muons search and ZH→ llbb have been tested
comparing flashsim with fullsim
Analyses tested all the way down to the final
DNN output, comparing different samples, some
never seen during training

Selection

Muons pT > 20 GeV, |η| < 2.4,
Iso < 0.25, MediumID

Jets pT > 25 GeV, |η| < 4.7,
puId > 0, jetId > 0

Signal
Region

115 GeV < m(ll) < 135 GeV pTj1 > 35
GeV ,

pTj2 > 25 GeV , m(jj) > 150 GeV ,
|Δη(jj)| > 2

Selection

Muons pT > 20 GeV, |η| < 2.4, Iso <
0.25, MediumID

Jets pT > 20 GeV, |η| < 2.5, puId > 0,
jetId > 0

Mediu
m b-tag DeepFlavour btag > 0.27

Signal
Region

75 GeV ≤ m(Z) < 105 GeV, 90
GeV < m(jj) < 150 GeV, Medium

b-tag (lead. jet)

VBF H→ mumu ZH→ llbb

VBF H→mumu

VBF H→ mumu

14

The speed depends on the approach

15

The current prototype with ~20
properties model and ~20 efficiency
models, starting from existing
generated samples runs between
10Hz and 1KHz

If the generator is very slow, we are
easily in the shadow of the generator

What if we can avoid being
generator-speed limited by reusing
generated events? Oversampling!

Processor
ODE accuracy
(timesteps)

Event simulation
rate

GPU 3060 100 325 Hz
GPU 3060 20 690 Hz
CPU 1-core 100 15 Hz
CPU 1-core 20 60 Hz
CPU 4-core 20 120 Hz

Event generation speed Ratio to Geant4-based

Generator
speed (Hz)

Oversample
factor

0.1Hz Geant4
based sim

10Hz
Flashsim

100Hz
Flashsim

1KHz
Flashsim

10Hz
Flashsim

100Hz
Flashsim

1KHz
Flashsim

available 1x 0.10 Hz 10.00 Hz 100.00 Hz 1000.00 Hz 100.0x 1000.0x 10000.0x

50.00 Hz 1x 0.10 Hz 8.33 Hz 33.33 Hz 47.62 Hz 83.5x 334.0x 477.1x

50.00 Hz 10x 0.10 Hz 9.80 Hz 83.33 Hz 333.33 Hz 98.1x 833.5x 3334.0x

1.00 Hz 1x 0.09 Hz 0.91 Hz 0.99 Hz 1.00 Hz 10.0x 10.9x 11.0x

1.00 Hz 10x 0.10 Hz 5.00 Hz 9.09 Hz 9.90 Hz 50.5x 91.8x 100.0x

0.05 Hz 1x 0.03 Hz 0.05 Hz 0.05 Hz 0.05 Hz 1.5x 1.5x 1.5x

0.05 Hz 10x 0.08 Hz 0.48 Hz 0.50 Hz 0.50 Hz 5.7x 6.0x 6.0x

Conclusions

CMS is investigating FlashSim as the next approach of simulation during
Run3/High-Lumi
● A complete working prototype for end-to-end simulation of CMS

NANOAOD format: if you are in CMS you can use this TODAY
● Tests on toy analyses show a good accuracy also for derived quantities,

next tests should be on real analysis, possibly already in Run3
● We can use the oversampling technique to maximize the exploitation of

generator level MC event

contact: francesco.vaselli@cern.ch

16

For more FlashSim, see also:

● CHEP24 Plenary talk
● CMS DPS Note
● CMS NOTE 2023 003 (old prototype with discrete flows)
● Technical paper: 2402.13684 (DOI)
● REPO: https://gitlab.cern.ch/cms-flashsim/cms-flashsim

Backup

17

We train on a 4M events cocktail

18

Trained on a cocktail of different
processes, covering various signatures in
the detector response
Likely a suboptimal choice, dedicated
QCD/Particle Gun samples can be
considered

Testing the power consumption of FlashSim

Using CERN IT machine
● 2x Silver 4110 (8 cores, 16 threads each)
● 4x NVIDIA T4 16 GB GDDR6 for the GPUs
● 194 GB of Memory,
● ~2Tb of storage

hep-benchmark-suite used to monitor the power of the server and the gpu stats
as well through
● `ipmitool dcmi power reading`
● `nvidia-smi`.

For more see “Giordano, D. et al., HEPScore: A new CPU benchmark for the
WLCG (2024), https://doi.org/10.1051/epjconf/202429507024 “, see also the
previous talk “The Role of the HEP Benchmark Suite[...]”

19

Estimating the cost of a training run:
extraction + training
Extraction of training data on CPU from ~ 4M
events
~30 mins for the extraction with Effective Power
Consumptions of 154W: 1.54 kWh for the
extraction of all 20 objects
Training on 4 threads, 1 GPU (similar conditions
to the training nodes on HTCondor)
average power ~211W with GPU util ~40%:
assuming average of 16h training runs for each
simulation model ~68 kWh
Considering efficiency models as well, we
estimate ~100kWh for a full training run!

20

Total server power
W

Idle power
W

Final
consumption

W

Extraction 194 40 (4 GPUs) 154

Training 241 30 (3 GPUs) 211

How to measure the FullSim power consumption fairly
Using again hep-benchmark-suite
We saturate the CPU and run
multiple 4 threads copies, but we
want to consider the consumption
of just one!
We divide by the copies on
“physical” cores since the scaling
of consumption with
hyperthreading is different
In our case 16 physical cores, 4
threads jobs -> consider just ¼ of
the consumption vs idle

21

Idle 0-N
physical
cores

Hyperthreading

Co
ns
um

pt
ion

Current speed brings a reduction in simulation costs

Both tested on RunII TTbar simulation, using 4 threads (and optionally 1 GPU)

Caveat: CMS FullSim running gen-sim and reco. Best comparison would be
FlashSim vs sim-digi-reco; however the consumption data and the throughput allow

to extrapolate a reasonable estimate

FlashSim on GPU has a 3 orders of magnitude reduction in the cost of energy
measured as kWh/ev!

22

Process
Total server power

W
Idle power (to subtract)

W
Final consumption

W Throughput (ev/s) kWh/ev

FlashSim on GPU 253 30 (3 GPUs) 223 ~163 Hz 3,80E-07

FlashSim on CPU 200 40 (4 GPUs) 160 ~1 Hz 4,40E-05

FullSim 256
40 (4 GPUs)+ 72 (other
copies running)=112 144 ~0.07 Hz 5,00E-04

FlashSim is already well integrated in the CMS
Computing infrastructure
We can use the CMS Analysis Remote Builder tool (CRAB) to submit the
simulation of large samples directly to gpu-enabled nodes of the grid

The dataset is automatically published on DAS and rucio at the end of the
simulation (already simulated >300M of samples in a few
hours).Training/inference scripts on HTCondor available as well

23

“Discrete” Flows

Build an (efficient) invertible transformation is not easy

Composition of simple transformations, correlated so that the
jacobian is tractable

Affine transform:

24

f1

f2

f3

Adapted from https://ehoogeboom.github.io/post/en_flows/

Continuous Flows (and Flow Matching)

Continuous transformation (t∈[0, 1])

Thanks to Flow Matching, we can learn the vector field

25

https://arxiv.org/abs/2210.02747 and
https://arxiv.org/abs/2302.00482

From https://github.com/atong01/conditional-flow-matching

Main idea:

Learn vector field u,
approximation of v

u is the field going from
noise to data under a
Gaussian assumption

t=0: p(z) = N(0,1)

t=1: p(z) = N(x,
sigma_min)

26

y = NN(x)
Loss = || u - y ||, simple regression!

Flow Matching: basic idea

Model architecture and libraries

We use PyTorch as Deep
Learning library

The architecture being used is a
ResNet with some additional
Gating (GLU layers) to improve
the response to conditioning

~2M parameters, around 1-2
days of training on HTCondor
(data is the bottleneck)

27

Conditioning and preprocessing are crucial
Some properties have obvious correlations
with generator level information

● generated vs reconstructed four-
momentum

● MC flavour with tagging variables

Two crucial points to reproduce correlations

● Conditioning:
○ e.g. is it b-quark jet?

● Transformations:
○ standard scaling
○ better learn PTreco or PTreco /PTgen ?
○ tails matter for physics (apply logs when needed)

28

physical
space

NN
space

Training resources and where to train

29

After optimizing the different modules, we
can submit a series of train-all scripts to
HTCondor

Need to train ~
20 Models + Efficiencies

Training on GPU, it takes about 1-2 days

Convenient for retrain campaigns on new
NanoAOD versions!

Oversampling

30

Is oversampling introducing biases?
Let’s test it against full sim
● We start from a sample for which we

have 8M full sim events
● We take a fraction (1/6th, 1.3M events)

of the full sim events and we can check
how oversampling (6x or 10x) it would
compare to the full sim sample

● Typical LHC MC samples are randomly
sampled “twice”
○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response
○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations
● Proper statistical treatment is needed for

events originating from “same gen”
○ count events that end up in the same bin of a

histogram as correlated
○ consider events in different bins as uncorrelated

Oversampling

31

● Typical LHC MC samples are randomly
sampled “twice”
○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response
○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations
● Proper statistical treatment is needed for

events originating from “same gen”
○ count events that end up in the same bin of a

histogram as correlated
○ consider events in different bins as uncorrelated

Oversampling

32

● Typical LHC MC samples are randomly
sampled “twice”
○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response
○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations
● Proper statistical treatment is needed for

events originating from “same gen”
○ count events that end up in the same bin of a

histogram as correlated
○ consider events in different bins as uncorrelated

Training samples vs flash-simulated samples
Samples used in training

33

Samples simulated for event validation

Sample
Event

s
tt̅ 800k
DY HT [100, 200], 2J MLL [200-1400] 930k
HH → bb bb 840k
X(3000) → Y(500) H(125) → (bb) (WW → 2q 2l 𝜈) 147k
X → HH → qq qq (MX 900, 1200, 1800; MH 365,
400, 18) 90k
SMS TchiZH mNLSP200-1500 300k
X(1200) → Y(300) H(125) → bb 𝛾 𝛾 400k
VBF H → 𝜏 𝜏 270k
bbA → ZH → ll 𝜏 𝜏 (M = 900) 33k

Sample
Event

s
tt̅ 100M
DY HT [100, 200] 25M
H → 𝜇 𝜇 1M
ZH 300k
jj + ll (ewk) 8M

About 4M events have been used to train FlashSim models while more than 100M events have been generated to
make the plots of the event level validation. Some simulated samples, such as H → 𝜇 𝜇 , were not used in training.
For samples used in training, such as tt̅, the event validation showed a remarkable agreement between FlashSim
and FullSim even if only a fraction of less than 1%, of the 100M events available, was used for training.

Efficiency models
Given a source object to we get a reconstructed
one?
● Efficiency models are trained as simple

classifiers with binary cross-entropy loss
○ output can be interpreted as a probability!

● At inference time we just toss in [0,1] and
compare with model probability

34

Prompt muon efficiency Prompt muon duplicate probability

Probability of a jet producing a mu

Fullsim Flashsim

Duplicates can be
handled by training
a second classifier
to predict when a
second copy is
produced

Vertex and Pileup

35

Secondary Vertices

36

Secondary Vertex from Taus and Heavy Flavour

37

SV from GenJets

38

Jets and Fake Jets

39

Tau

40

Signal Background

Tau properties

41

Muon features

42

FatJets

43

SubJets

44

Electrons

45

Photon from generator level photons

46

Photon from Jets

47

MET

48

Z(ll)H(bb)

49

VBF Higgs to mumu

50

