

Muon identification with Deep Neural Network in the Belle II K-Long and Muon detector

Based on arXiv:2503.11351 Accepted by NIM-A

WANG Zihan 王子涵

The University of Tokyo

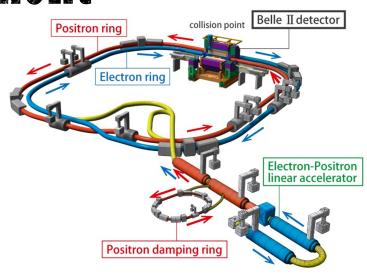
On behalf of authors

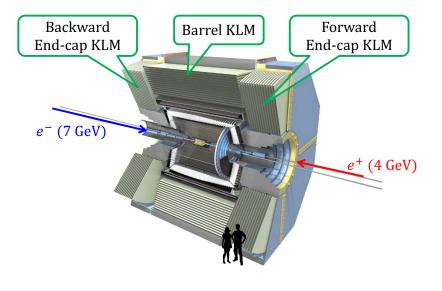
EPS-HEP 2025

2025.07.09

This work is supported by JSPS KAKENHI Grant Number: JP24KJ0650 and JP22H00144

SuperKEKB and Belle II Experiment

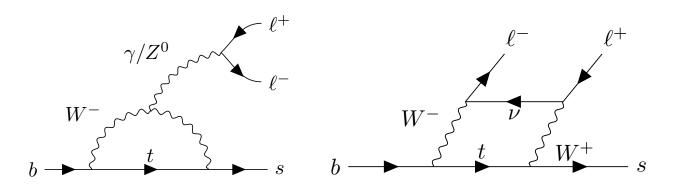

SuperKEKB

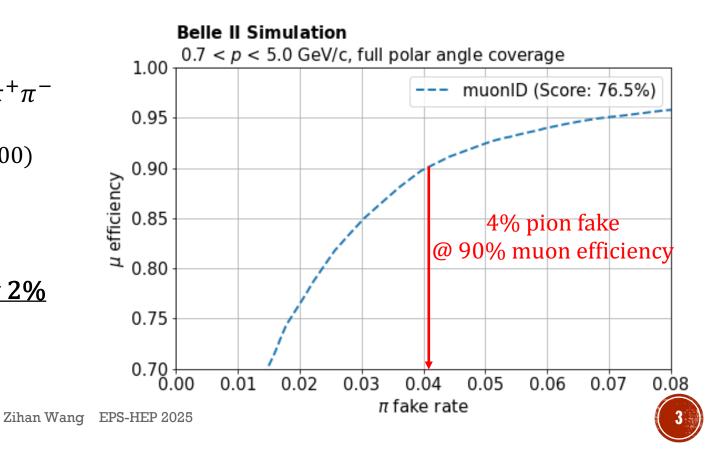

• Asymmetric e^+e^- collision at $\Upsilon(4S)$ resonance

	$\int \mathcal{L} dt$	${\cal L}$
Target	50 ab ⁻¹	$6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
Achieved	575 fb ⁻¹	$5.1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
		New world record!

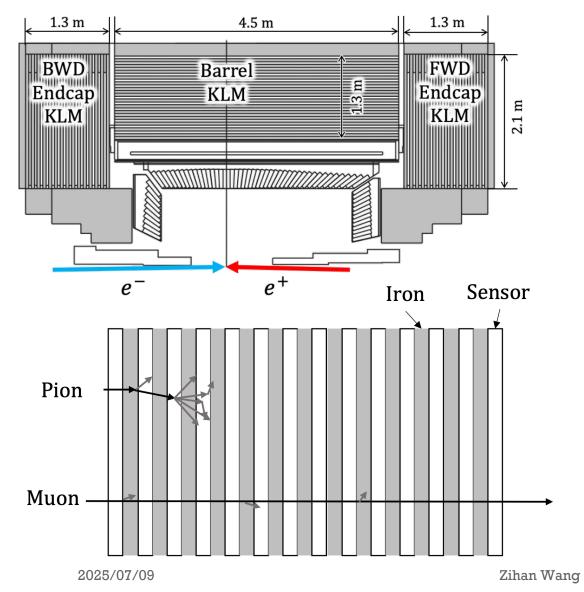
Belle II experiment

- New physics search at the luminosity frontier
- Rich muon-related physics topics like $b \rightarrow s\mu^+\mu^$ transition, $b \rightarrow c\tau\nu$ with $\tau \rightarrow \mu\nu\bar{\nu}$
- Muon detection by K-Long and Muon (KLM) detector at the outer most of Belle II

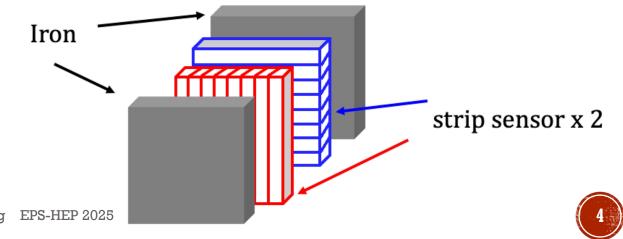



2025/07/09

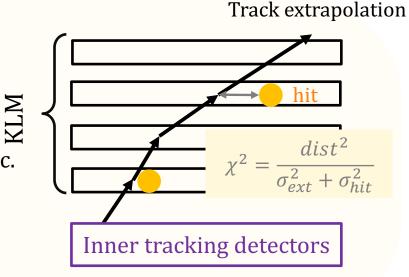
2


Physics motivation

- Electro-weak penguin process b → sµ⁺µ⁻ is suppressed in SM, and sensitive to new physics
- π[±] → μ[±]mis-identification from B → Xπ⁺π⁻ decay is one of the main background
 B(B → Xπ⁺π⁻)/B(B → X_sμ⁺μ⁻) = O(1000)
- π fake < 2% is required
- <u>Target:</u> Suppress pion fake rate below 2% <u>@ 90% muon efficiency</u>



K-Long and Muon Detector (KLM)


- Sandwich structure of iron plate and sensor
 - Barrel: 15 layers, Endcap: 14/12 layers for FWD/BWD
 - Sensor: Resistive Plate Chamber or Plastic scintillator
- Muon identification based on penetration ability
 - > 3.9 interaction length
- Detect 2-dimentional spatial information with 2 orthogonally placed strip sensors in each layer

Current muonID algorithm

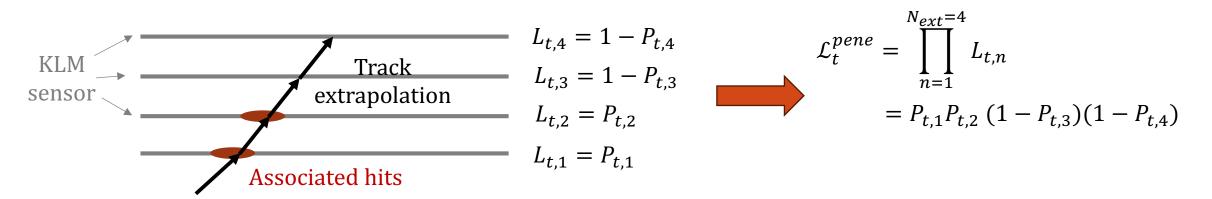
STEP 1 Track extrapolation & Hit association

- Measure track position/momentum with inner detectors
- Use Geant4E to estimate penetration depth inside KLM
 - Assuming tracks are muon, considering multiple-scattering effects etc.
- Associate one hit with smallest χ^2 to target track at each layer
 - Also require $\chi^2 < (3.5)^2$
- Use Kalman-Filter to correct extrapolation

muonID calculation

- Use penetration ability and extrapolation quality to calculate muon/pion likelihood $(\mathcal{L}_{\mu}/\mathcal{L}_{\pi})$
- muonID definition:

$$muonID_{KLM} = \frac{\mathcal{L}_{\mu}}{\mathcal{L}_{\mu} + \mathcal{L}_{\pi}}$$

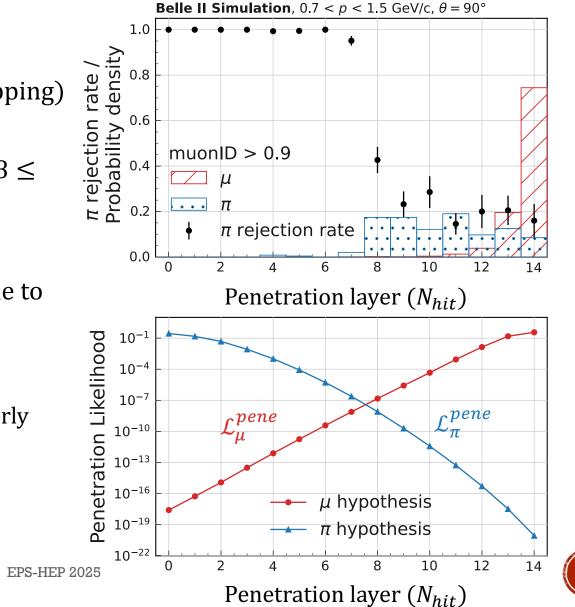


Likelihood extraction on penetration ability

- Assign a probability to each layer depending on whether a hit is associated or not
- Calculate probability by direct product of layer probability

$$\mathcal{L}_{t}^{pene} = \prod_{n=1}^{N_{ext}} L_{t,n} \qquad t \in \{\mu, \pi\}$$

For tracks extrapolated to stop at layer 4 (N_{ext} = 4) and only hits associated at the first two layers (N_{hit} = 2):



Discussion on penetration likelihood

- For tracks extrapolated to layer 14 (N_{ext} = 14), muonID only rejects pions with penetration (stopping) layer N_{hit} < 8
- Still, quite a fraction of remaining pions exists in $8 \le N_{hit} \le 10$, which rarely happens for muon
- MuonID failed to reject pions in $8 \le N_{hit} \le 10$ due to imperfect modeling of penetration likelihood
 - \mathcal{L}^{pene}_{μ} larger than \mathcal{L}^{pene}_{π} from $N_{hit} > 8$
 - Because correlations between layers are not properly considered

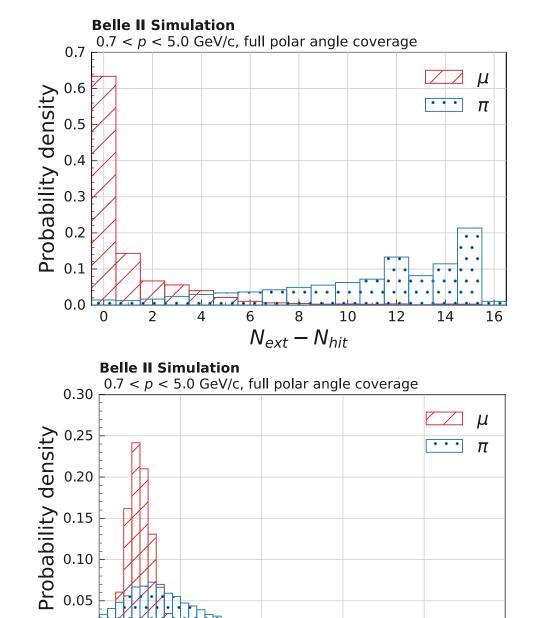
Better modeling of penetration information can improve performance

Zihan Wang

2025/07/09

Strategy

- New Deep Neural Network (DNN)-based algorithm
- Consider correlations between input variables


Input variables

- **1.** Global variables
 - Track-level variables like penetration layers
- 2. Hit pattern variables
 - Detailed hit-level information
 - New for muon identification

Global variables

- Difference in extrapolation & penetration layer: $N_{ext} N_{hit}$
- Extrapolation layer
 - Penetration layer distribution is different for different extrapolation layer
- Extrapolation quality($\sum \chi^2$ and n_{dof})
 - Muons extrapolated with muon hypothesis and thus peak at 1
 - Pion has larger value due to multiple scattering
- Transverse momentum

8

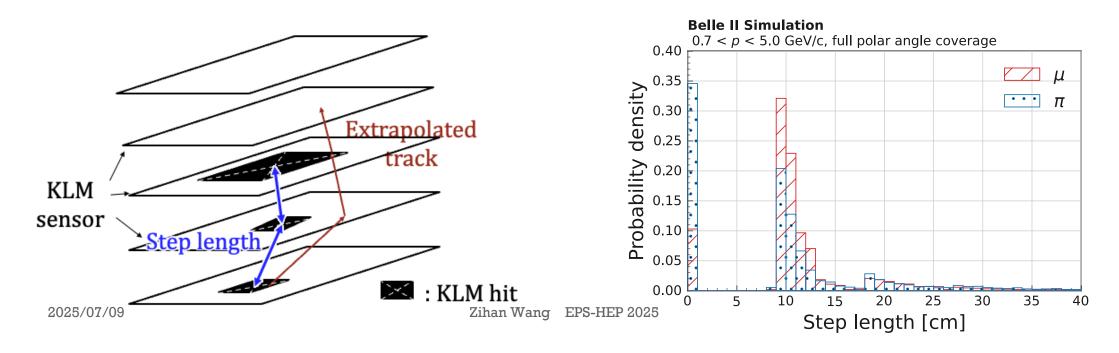
10

6

 $\sum \chi^2 / n_{\rm dof}$

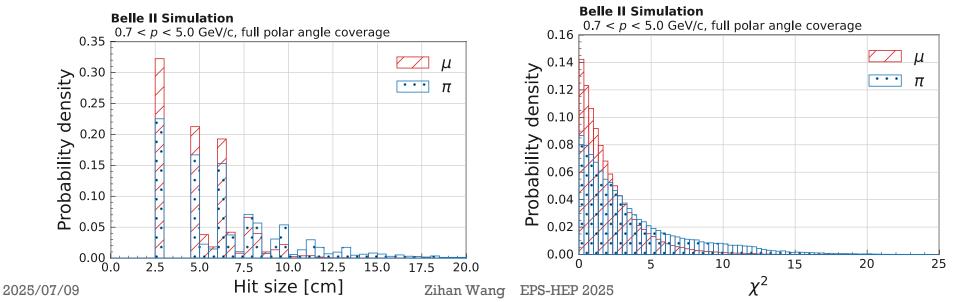
2025/07/09

Zihan Wang EPS-HEP 2025

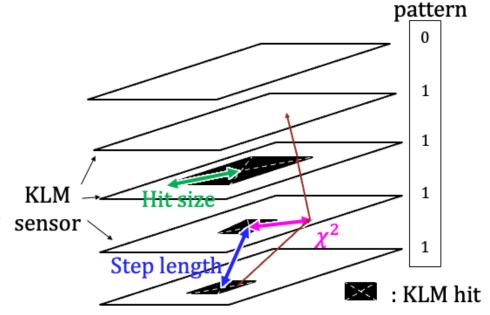

0.00

Hit pattern variable: Step length

• Step length: distance to hit in previous layer

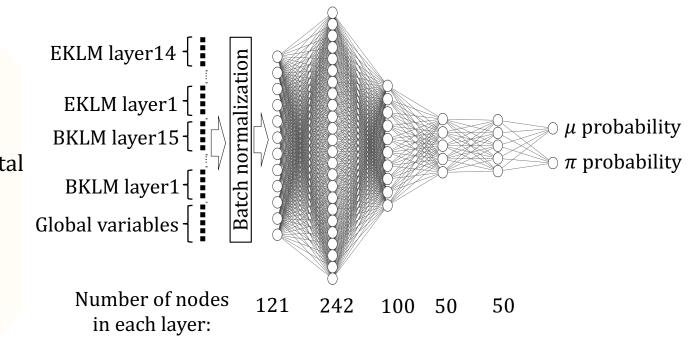

Strength:

- Detailed 3D penetration information compared to penetration layer, which only reflects penetration projected in normal direction of detector plane
- Penetration depth (sum of step length) of muon is larger than pion



Other hit pattern variables

- 1. Hit size: Half of the diagonal length of the rectangular shape of a hit
- 2. χ^2 : Deviation from hit to extrapolation position
- 3. Extrapolation pattern: whether extrapolation has reached set this layer
 - To compare extrapolation and penetration pattern


Extrapolation

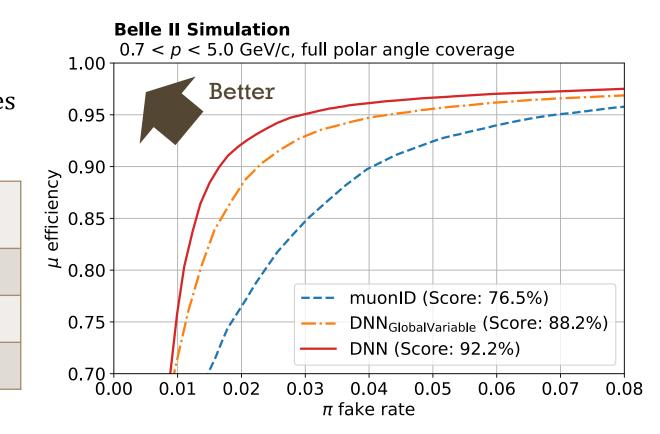
Network structure & training

Network structure

- 121 input variables
 - 5 global variables
 - 4 hit pattern variables per layer, 29 layers in total
- Fully connected Network
 - 64k trainable parameters
- LeakyReLU for activation function
- Softmax for probability output

Training

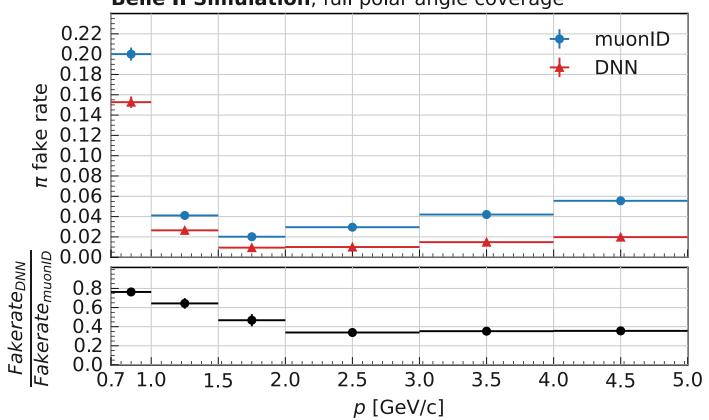
- Event generated with 4 to 16 tracks for simulating different event multiplicity
 - Simulated beam-induced background overlayed
- Uniform phase space distribution covers full KLM geometric acceptance; 0.5M pions and muons
- No overtraining


2025/07/09

Performance

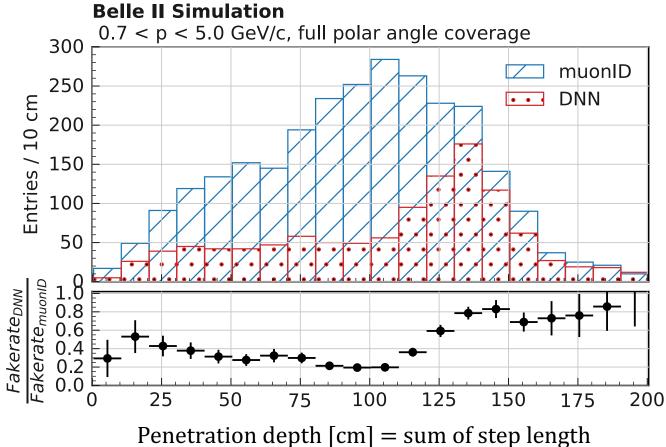
- Also trained DNN with global variables only, showing the importance of hit pattern variables
 - Almost same network structure

	Fake rate @90%muon effi	Muon effi @ 2% fake rate
muonID	4.1%	76.5%
DNN _{GlobalVariable}	2.3%	88.2%
DNN	1.6%	92.4%



DNN with hit pattern variables

suppresses pion fake rate below 2% @ 90% muon efficiency


Performance

Belle II Simulation, full polar angle coverage

- Fix muon efficiency to 90% at each momentum bin.
- Pion fake rate improved over 60% at high momentum range (p > 2.0 GeV/c).
- Improvement less significant at low momentum range where muons cannot traverse KLM entirely.
 Zihan Wang EPS-HEP 2025

Performance ₃

• Above plot shows penetration depth distributions of pions faking muons at 90% muon efficiency

- DNN rejected about 60% of deeply penetrated pions up to a depth of 125 cm
 - Rise of fake rate at 125 cm penetration depth similar KLM detector thickness of 130 cm
 - For tracks escaping from KLM, μ/π separation by penetration ability is impossible

Summary

- Muon identification algorithm with high performance is necessary for precise measurement of flavor physics at Belle II
- Current muonID cannot reject deeply penetrating pion
- We developed a new algorithm using DNN, employing additional hit-pattern variables
- We learned that this new algorithm suppresses pion fake rate below 2% at 90% muon efficiency in a simulation sample
 - Satisfied the requirement in $b \rightarrow s\mu^+\mu^-$ measurement
- This algorithm is implemented into Belle II software framework and validations on full dataset is expected in the future
- Check <u>arXiv:2503.11351</u> for more details!

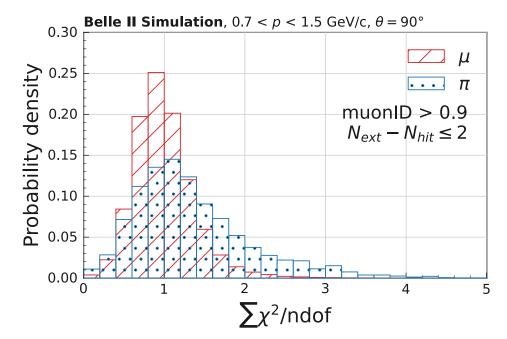
BACK UP

Likelihood calculations for muonID

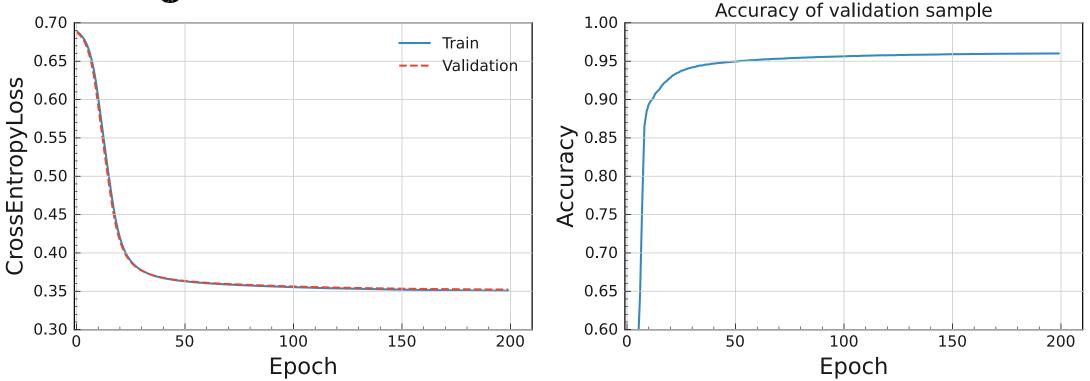
$$\mathcal{L}_{\mu} = \mathcal{L}_{\mu}^{pene} \times \mathcal{L}_{\mu}^{in-plane}$$

• Extract the probability of track *t* leaving hits in layer *n*, $P_{t,n}$ from simulation, and assign probability to each layer:

$$L_{t,n} = \begin{cases} P_{t,n} \cdot \varepsilon_n, & \text{with hit} \\ 1 - P_{t,n} \cdot \varepsilon_n, & \text{without hit'} \end{cases} \quad t \in \{\mu, \pi\}$$


- Typically, a 96% hit detection efficiency per layer (ε_n) is achieved in operations
- Calculate probability by direct product of layer probability

$$\mathcal{L}_{t}^{pene} = \prod_{n=1}^{N_{ext}} L_{t,n}$$



In-plane information

- In-plane likelihood derived from $\sum \chi^2 / n_{dof}$ distribution
 - Extrapolated with muon hypothesis and thus peak at 1
 - Pion has larger value due to multiple scattering
- Still, some remaining pions can be rejected by requiring $\sum \chi^2/n_{dof} < 2$
- Failed to do so because of different scale of L^{pene} and L^{in-plane}.
- Specifically, $\mathcal{L}_{\mu}^{in-plane}/\mathcal{L}_{\pi}^{in-plane} pprox 10^{-1}$
- , $\mathcal{L}_{\mu}^{pene}/\mathcal{L}_{\pi}^{pene}\approx 10^{13}$
- The relationship muonID>0.9 can hardly be influenced by the in-plane likelihood.

Training details

- Adam optimizer; learning rate of 10^{-5} ; batch size = 10000; CrossEntropy loss
- Early stop when accuracy does not increase for 10 epochs
- Device: RTX 3090 for 30 min training.

2025/07/09

Robustness test and implementation Robustness test

- Background:
 - > Sample overlayed with beam background simulated at Belle II nominal luminosity (x3 of training sample)
 - Pion fake rate degrades to 2.4%, probably because of changes in hit pattern
 - > Still DNN performs better than muonID, and re-training can be expected when machine status evolves
- Detector inefficiency
 - Set hit detection efficiency 10% below typical efficiency
 - Pion fake rate slightly degrades to 2.0%
- Extrapolation uncertainty from magnetic field modeling
 Verified B field by 10%, no significant performance degradation

Implementation into Belle II Analysis Software Framework (basf2)

- Tested inference latency is 1.81 ± 0.78 ms per $e^+e^- \rightarrow B\overline{B}$ event on KEK CPU cluster (KEKCC)
- Implemented in offline reconstruction phase of Belle II data processing 2025/07/09
 Zihan Wang EPS-HEP 2025

