Precision calculation of the hadronic vacuum polarization contribution to the muon anomaly

Based on arXiv:2407.10913

Alessandro Lupo (Aix-Marseille Université & CNRS) on behalf of BMW and DMZ

EPS conference, Marseille 09 July 2025

A. Boccaletti^{1,2}, Sz. Borsanyi¹, M. Davier³, Z. Fodor^{1,4,5,2,6,7,*}, F. Frech¹, A. Gérardin⁸, D. Giusti^{2,9},
 A.Yu. Kotov², L. Lellouch⁸, Th. Lippert², A. Lupo⁸, B. Malaescu¹⁰, S. Mutzel^{8,11}, A. Portelli^{12,13}, A. Risch¹,
 M. Sjö⁸, F. Stokes^{2,14}, K.K. Szabo^{1,2}, B.C. Toth¹, G. Wang⁸, Z. Zhang³

Lattice QCD

 Regularisation of QCD (IR & UV cutoff) that leads to a well-defined path integral...

 ... in Euclidean spacetime: suitable for Monte Carlo evaluation of observables

$$\langle \mathcal{O}
angle = \mathcal{Z}^{-1} \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A \ \mathcal{O}[U, A, \psi, \bar{\psi}] e^{-S[U, A, \psi, \bar{\psi}]}$$

 Framework to precisely quantify systematics: only way to provide ab-initio predictions in QCD (+QED) with subpercent precision Fermions on site $\psi(x)$ Gluons, photons on links $U_{\mu}(x)$

Lattice QCD: systematics

CPT

Continuum limit

(QED and $m_u \neq m_d$)

Strategy

$$a_{\mu}^{
m LO-HVP} = lpha^2 \int_0^\infty dt \; K(t) C(t)$$

Two-point function of electromagnetic currents:

$$C(t) = rac{1}{3}\sum_{i=1}^{3} \langle J_i(t) J_i(0)
angle$$

The kernel K(t), related to the leptonic part, is known

$$\begin{split} \mathcal{K}(t) &= \int_{0}^{\infty} \frac{dQ^2}{m_{\mu}^2} \; \omega(\frac{Q^2}{m_{\mu}^2}) \; [t^2 - \frac{4}{Q^2} \sin^2(\frac{Qt}{2})] \; , \\ \\ \omega(r) &= [r + 2 - \sqrt{r(r+4)}]^2 / \sqrt{r(r+4)} \end{split}$$

Construct and compare window observables [RBC/UKQCD '18] to reduce/enhance certain systematics

Precision calculation of the LO-HVP • A. Lupo (Aix-Marseille Univ.)

28 large-scale simulations, scattered around the physical point

- Blinded analysis
- Including new lattice spacing, closer to the continuum

 $a = 0.064 \text{fm} [96^3 \times 144] \longrightarrow 0.048 \text{fm} [128^3 \times 192]$

- Continuum extrapolation of I = 0 instead of disconnected
- Analysis from optimised set of windows: $[0, 0.4] \cup [0.4, 0.6] \cup [0.6, 1.2] \cup [1.2, 2.8]$ fm Lattice QCD+QED : $(96.1\% \text{ of total } a_{\mu})$
- Evaluation of [2.8,∞] fm (3.9%): computed from low-energy region of e⁺e⁻ annihilation data, no tension between datasets (see Fig. →)

Precision calculation of the LO-HVP • A. Lupo (Aix-Marseille Univ.)

Error budget and improvement

References:

Borsanyi, S. et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature 593, 51-55. arXiv: 2002.12347 [hep-lat] (2021).

BMW 17 = Borsanyi, S. et al. Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles. Phys. Rev. Lett. 121, 022002. arXiv: 1711.04980 [hep-lat] (2018).

Continuum limit

- Extrapolation of a given quantity Y to the continuum, iso-symmetric point
- X₁, X_s deviations from physical values of light / strange quarks
- a^2 and Δ_{KS} parametrise deviations from the continuum results

$$Y(a, X_{I}, X_{s}) = A(a^{2}) + A'(\Delta_{KS}) + X_{I}B(a^{2}) + X_{s}C(a^{2})$$

Combinations of different models, cuts on data, ... weighted with AIC

Finite volume

99.9% of a_{μ}

- Typical lattice volumes $L_{rof} \sim 6$ fm
- The remaining 2% needs to be estimated:
 - · ChPT [next talk by Pierre Vanhove]
 - $\cdot e^+e^-$ data into finite-volume physics [Lüscher '91, Lellouch-Lüscher '01, H.B.Mever '11], Hansen-Patella ['19, '20]
- BMW20: $L_{\rm big} \sim 11 {\rm fm \ box}$
- BMW24: e^+e^- tail [2.8 fm, inf] reduces the part of the calculation that is in a finite volume

 $18.5(2.5) \rightarrow 9.3(9)$ [0.13%]

BMW24: for our estimate we use lattice in the $L_{\rm big} = 11 {\rm fm \ box}$, and we check consistency with other methods (Fig. \rightarrow)

light and disconnected $00 - 28$	618.6(1.9)(2.3)[3.0]	this work, Equation (34)
strange $00 - 28$	53.19(13)(16)[21]	this work, Equation (37)
charm $00 - 28$	14.64(24)(28)[37]	this work, Equation (40)
light qed	-1.57(42)(35)	[5], Table 15 corrected in Equation (45)
light sib	6.60(63)(53)	[5], Table 15
disconnected ged	-0.58(14)(10)	[5], Table 15
disconnected sib	-4.67(54)(69)	[5], Table 15
disconnected charm	0.0(1)	[31], Section 4 in Supp. Mat.
strange qed	-0.0136(86)(76)	[5], Table 15
charm qed	0.0182(36)	[43]
bottom	0.271(37)	[44]
tail from data-driven $28-\infty$	27.59(17)(9)[26]	this work, Equation (50)
total	714.1(2.2)(2.5)[3.3]	

References:

5. BMW20

31. BMW17

43. Giusti et al. [hep-lat/1901.10462]

44. Colquhoun et al. [hep-lat/1408.5768]

Agreement between lattice collaborations and experiments: no indication of new physics

• Tension with e^+e^- based determination remains