

Lattice calculation of the hadronic light-by-light contribution to the muon g-2

Antoine Gérardin - on behalf of the BMW collaboration

EPS-HEP conference 2025 - Marseille

Anomalous magnetic moment of the muon

► Magnetic moment of charged leptons :

$$\vec{\mu} = g_\ell \left(\frac{Qe}{2m_\ell}\right) \vec{S} \qquad \Rightarrow \qquad a_\ell = \frac{g_\ell - 2}{2} = \frac{\alpha}{2\pi} + O(\alpha^2)$$

Contribution	$a_{\mu} \times 10^{11}$	Ş
- QED ($10^{ m th}$ order)	$116\ 584\ 718.931 \pm 0.104$	Next ta
- Electroweak	153.6 ± 1.0	
- Strong interaction		
HVP (LO)	$7 \ 041 \pm 61$	
HVP (NLO + NNLO)	-85.9 ± 0.7	\$
HLbL	112.6 ± 9.6	I his ta
Standard Model	116592033 ± 62	
Experiment	$116\ 592\ 072\pm 15$	<u> </u>

▶ Status in 2025 (Lattice QCD average from [2505.21476 [hep-ph]])

Antoine Gérardin

► Challenging

 \rightarrow hadronic light-by-light tensor $\Pi_{\mu\nu\lambda\sigma}(p_1, p_2, p_3) = \int_{x,y,z} \Pi_{\mu\nu\lambda\sigma}(x, y, z) e^{-i(q_1x+q_2y+q_3z)}$

 \rightarrow depends on four momenta, multi-scale system

► Until 2016 : mostly based on model estimates (~ 30 - 40% errors) $a_{\mu}^{\text{HLbL}} = 105(26) \times 10^{-11}$ [Prades, de Rafael, Vainshtein '09] $a_{\mu}^{\text{HLbL}} = 116(39) \times 10^{-11}$ [Jegerlehner, Nyffeler '09]

▶ Precision goal : < 10% (with controlled uncertainties) → requires first principle approach : data-driven dispersive framework / lattice QCD

 \blacktriangleright Hadronic contribution : low-energy physics \rightarrow non-perturbative methods

Master formula in position space :

$$a_{\mu}^{\text{HLbL}} = \frac{m_{\mu}e^{6}}{3} \int d^{4}y \int d^{4}x \,\mathcal{L}_{[\rho,\sigma],\mu\nu\lambda}(x,y) \,i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y)$$

• QED part of the diagram (muon, photons) : $\mathcal{L}_{[\rho,\sigma],\mu\nu\lambda}(x,y)$

 \rightarrow computed in the continuum and infinite volume $\rightarrow \mathcal{L}_{[\rho,\sigma],\mu\nu\lambda}(x,y)$ computed semi-analytical : Mainz group [JHEP 04 (2023) 040]

► Hadronic correlation function : $i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y) = -\int d^4z \, z_\rho \langle j_\mu(x)j_\nu(y)j_\sigma(z)j_\lambda(0) \rangle$

ightarrow Lattice QCD : numerical evaluation of the path integral in Euclidean space-time

 \rightarrow based on Monte Carlo methods \rightarrow statistical uncertainties

$$ightarrow$$
 continuum limit extrap : $\mathcal{O}(a^2)$
 $ightarrow \infty$ volume extrap : $\mathcal{O}(e^{-m_{\pi}L})$

4

$$a_{\mu}^{\text{HLbL}} = \frac{me^{6}}{3} \int d^{4}y \int d^{4}x \, \mathcal{L}_{[\rho,\sigma],\mu\nu\lambda}(x,y) \, i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y)$$

with

$$i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y) = -\int \mathrm{d}^4 z \, z_\rho \, \langle j_\mu(x)j_\nu(y)j_\sigma(z)j_\lambda(0) \rangle$$

 \blacktriangleright sums over x and z are done explicitly over the lattice

- \blacktriangleright use rotational symmetry to write $\mathrm{d}^4 y = 4\pi^2 |y|^3 \mathrm{d} |y|$
- ▶ sample the remaining 1D integral over |y| with O(10) points

$$a_{\mu}(|y|) = \int_{0}^{|y|} \mathcal{I}(|y'|) \,\mathrm{d}|y'|$$

• Long distances (|y| > 1 fm):

 \rightarrow statistical noise increases exponentially with |y| (situation even worse at $m_{\pi} = m_{\pi}^{\text{phys}}$)

- \rightarrow finite-volume effects
- \rightarrow dominated by the pion-exchange contribution

▶ Replace data by pion-exchange contribution, evaluated using position-space approach → include lattice data as much as possible to avoid systematic bias

Large cancellation between connected and disconnected contributions

• Wick contractions :
$$i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y) = -\int d^4z \, z_\rho \, \langle j_\mu(x)j_\nu(y)j_\sigma(z)j_\lambda(0) \rangle$$

- results for one lattice spacing
- ▶ pion-exchange = main contribution

$$a_{\mu}^{\text{hlbl},\text{conn}} \longleftarrow +\frac{34}{9} \times a_{\mu}^{\pi^{0}-\text{pole}}$$

 $a_{\mu}^{\text{hlbl},2+2} \longleftarrow -\frac{25}{9} \times a_{\mu}^{\pi^{0}-\text{pole}}$

▶ large cancellation expected [J. Bijnens et. al '16]

Pseudoscalar-exchange contribution on the lattice

Antoine Gérardin

8

GeV]

Small volume

Large volume

▶ Pion exchange computed in finite volume : good description of our data at large |y|

▶ ... both in large and small volumes

- \rightarrow finite-volume effects are dominated by pion-exchange
- \blacktriangleright Strategy : replace lattice data by pion exchange for $|y| > y_{\rm cut}$
 - \rightarrow keep $y_{\rm cut}$ large such that this correction is small compared to statistical uncertainty.

- ▶ Staggered quarks : leading discretization effects are $\mathcal{O}(a^2)$
- ▶ 3 lattice spacings data at a fourth lattice spacing is in production
- ▶ all simulations are performed at the physical pion-mass

$$a_{\mu}^{\text{conn},l} = 220.1(13.0)_{\text{stat}}(3.8)_{\text{syst}} \times 10^{-11}$$
$$a_{\mu}^{(2+2),l} = -101.1(12.4)_{\text{stat}}(3.2)_{\text{syst}} \times 10^{-11}$$
$$a_{\mu}^{l} = 122.6(11.5)_{\text{stat}}(1.8)_{\text{syst}} \times 10^{-11}$$

Conclusion

► Complete calculation now published [Phys.Rev.D 111 (2025) 11, 114509 - BMW collaboration]

- ightarrow 3 lattice spacings at the physical pion mass (and two different volumes)
- \rightarrow dedicated calculation of the pion transition form factor : finite-volume effects, long-distance contribution
- \rightarrow precision <10% (target precision to match Fermilab's experimental result)
- \rightarrow outlook : add a fourth lattice spacing to improve our continuum limit extrapolation

 $a_{\mu}^{\mathrm{HLbL}} \times 10^{11}$

Conclusion

Complete calculation now published [Phys.Rev.D 111 (2025) 11, 114509 - BMW collaboration]

- \rightarrow 3 lattice spacings at the physical pion mass (and two different volumes)
- \rightarrow dedicated calculation of the pion transition form factor : finite-volume effects, long-distance contribution
- \rightarrow precision <10% (target precision to match Fermilab's experimental result)
- \rightarrow outlook : add a fourth lattice spacing to improve our continuum limit extrapolation

- Light pseudoscalar exchange : dominant contribution in dispersive framework
 - \rightarrow lattice calculation of the π^0 , η , η' transition form factors [Phys.Rev.D 111 (2025) 5, 054511 BMW collaboration]

Thank you!