On Soft Contributions to the $B\to\gamma^*$ Form Factors $_{\rm EPS\ -\ HEP\ 2025}$

Eduardo Velásquez In collaboration with Aoife Bharucha and Danny van Dyk

СРТ

Marseille, 10 July 2025.

- B mesons are **bound states** of the heavy b quark and a light u, d, s or c quark
- provide access to **SM parameters** (and NP):
 - sensitive to CKM matrix elements Testing the Standard Model
 - study of $B^0 \overline{B}^0$ oscillations CP violation
 - rare decays New Physics
- essential for this: knowledge of the *B* meson **substructure** (hadronic matrix elements)
 - if decays are factorizable: LQCD, LCSR, and QCDF
 - if decays are not factorizable: QCDF

QCD Factorization

- if the kinematics allow an **expansion**, QCDF can calculate some hadronic matrix elements relevant to *B*-meson decays
- calculation depends crucially on some universal hadronic inputs, in particular, the *B*-meson LCDAs
- for an energetic photon (E_γ ≫ Λ_{QCD}), B → γ^(*)ℓ⁻ν̄ is the simplest process that depends on these LCDAs

Leading twist LCDA defined as:

$$\begin{split} &\left\langle 0 \left| \overline{q}_s(tn_-) \left[tn_-, 0 \right] \not n_- \gamma_5 h_v(0) \right| B_v^- \right\rangle \\ &= im_B F_B \int_0^\infty d\omega \ e^{-i\omega t} \phi_+(\omega) \end{split}$$

Predictions for other processes

- LCDA is **input** for QCDF predictions for non-leptonic (CKM parameters) and rare decays (probe NP)
- LCDA is input for LCSR used to **predict many form factors** for B decays to other mesons
- turn it around: use data on $B^-\to\gamma^*\ell^-\bar\nu$ to extract information on the LCDAs to predict other quantities
 - data depends dominantly on inverse moment of leading LCDA: $\lambda_B^{-1} = \int_0^\infty d\omega \ \phi_+(\omega)/\omega$, not well known

- although $B^- \to \gamma^{(*)} \ell^- \overline{\nu}_{\ell}$ is dominated by light-like contributions, soft contributions appear nonetheless
- why? ρ and γ^* have the same quantum numbers for q^2 close to m_{ρ}^2
 - resonant enhancement
 - need to have the tail of this soft contribution under control
- constitute hardly-quantifiable systematic uncertainty
- not accessible within the framework of QCDF

Estimating Soft Contributions

 \rightarrow light-cone **sum rule** set up

[Braun/Khodjamirian 1210.4453]

• off-shell photon case has been discussed but only estimated from partial hadronic tensor (3 out of 4 form factors)

[Beneke/Böer/Rigatos/Vos 2102.10060], [Bharucha/Kindra/Mahajan 2102.03193]

→ general off-shell case and its dispersion relations require all 4 form factors without kinematic singularities [Kürten/Zanke/Kubis/van Dyk 2210.09832]

Factorization Framework and Beyond

We consider the diagram

- γ^{*} emission from b is m_b power suppressed
- FSR is perturbatively calculable

Up to corrections of $\mathcal{O}(\alpha_e)$, the photoleptonic amplitude reads

$$\mathcal{M}(B^{-}(p) \to \ell^{-}(p_{\ell})\bar{\nu}_{\ell}(p_{\nu})\gamma^{*}(q,\varepsilon)) \\ = \frac{G_{F}V_{ub}}{\sqrt{2}} \left[eQ_{B}\varepsilon^{*}_{\mu} \left(T^{\mu\nu}_{\mathsf{H}}(k,q) + T^{\mu\nu}_{\mathsf{FSR}}(p_{\ell},p_{\nu}) \right) L_{\nu} \right],$$

where $L^{\nu} := \langle \ell^- \overline{\nu}_{\ell} | J^{\nu}_{\mathsf{L}} | 0 \rangle.$

Hadronic Tensor Splitting

Focus on

$$\begin{split} T^{\mu\nu}_{\mathrm{H}}(k,q) &:= \int d^4x \; e^{iq\cdot x} \left\langle 0 \right| T\{J^{\mu}_{\mathrm{em}}(x)J^{\nu}_{\mathrm{H}}(0)\} \big| B^-(q+k) \right\rangle \\ &= T^{\mu\nu}_{\mathrm{hom.}} + \; T^{\mu\nu}_{\mathrm{inhom.}} \end{split}$$

$$\begin{split} T^{\mu\nu}_{\text{hom.}}(k,q) &\rightarrow \text{Lorentz decomposition} \\ \text{in terms of } B &\rightarrow \gamma^* \text{ form factors} \\ F_1\left(k^2,q^2\right), \dots, F_4\left(k^2,q^2\right). \end{split}$$

 $\begin{array}{l} q_{\mu}\left(T_{\text{inhom.}}^{\mu\nu}(k,q)+T_{\text{FSR}}^{\mu\nu}(k,q)\right)\stackrel{!}{=} 0\\ \Longrightarrow \text{ Avoid unphysical, kinematic}\\ \text{singularities in } q^2 \text{ in the form factors.} \end{array}$

The absence of such **kinematic singularities** is a formal prerequisite for expressing these form factors through hadronic **dispersion relations**

[Kürten/Zanke/Kubis/van Dyk 2210.09832]

• for $E_\gamma \gg \Lambda_{\rm QCD}$ in the *B*-meson rest frame, the time-ordered product in $T_{\rm H}$ is dominated by field configurations at light-like distances, *i.e.*, $x^2 \approx 0$

[Descotes-Genon/Sachrajda hep-ph/0209216]

• for each form factor, the leading power result factorizes:

$$F_i(q^2,k^2) = \frac{ef_B}{m_B} \int_0^\infty d\omega \underbrace{\frac{T_i^{\text{tw2}}(\omega,n_+q,n_-q)}{\text{scattering kernel}}}_{\text{scattering kernel}} \underbrace{\phi_+(\omega)}_{\text{LCDA}} + \mathcal{O}\left(\frac{\Lambda_{\text{had}}}{\{n_+q,m_b\}}\right)^2$$

The hard-collinear scattering kernels T_i^{tw2} are:

$$T_1^{\mathsf{tw2}} = -T_2^{\mathsf{tw2}} = -T_3^{\mathsf{tw2}} = T_4^{\mathsf{tw2}}(\omega, n_+q, n_-q) = \frac{m_B^2 Q_u}{n_+q(\omega - n_-q)}$$

• general structure at leading power and to leading order in α_s : the hard-scattering kernels exhibit a **universal** ω **dependence**

• hard-scattering kernels for the full basis of form factors for the first time

Light-Cone Sum Rule Set Up 1/2

1 Dispersion relation of form factors:

$$F_i(k^2, q^2) = \frac{f_\rho \mathcal{F}_i^{B \to \rho}(k^2)}{m_\rho^2 - q^2} + \frac{1}{\pi} \int_{s_0}^{\infty} ds \, \frac{\operatorname{Im}\left\{F_i(k^2, s)\right\}}{s - q^2}$$

QCDF results as dispersive integrals:

$$F_i^{\mathsf{QCDF}}(k^2,q^2) = \frac{1}{\pi} \int_0^\infty ds \, \frac{\mathrm{Im}\left\{F_i^{\mathsf{QCDF}}(k^2,s)\right\}}{s-q^2}$$

3 Local quark-hadron duality **assumption**:

$$\mathrm{Im}\left\{F_i(k^2,s)\right\}\simeq\mathrm{Im}\left\{F_i^{\mathsf{QCDF}}(k^2,s)\right\}\quad\text{for }s>s0$$

Light-Cone Sum Rule Set Up 2/2

④ Reduce sensitivity of assumption by Borel transformation \rightarrow Isolate $\mathcal{F}_i^{B \rightarrow \rho}(k^2)$:

$$f_{\rho} \mathcal{F}_{i}^{B \to \rho}(k^{2}) = \frac{1}{\pi} \int_{0}^{s_{0}} ds \ e^{-(s-m_{\rho}^{2})/M^{2}} \operatorname{Im}\left\{F_{i}^{\mathsf{QCDF}}(k^{2},s)\right\}$$

6 Write form factor as **leading + soft contribution**:

$$\begin{split} F_i(k^2, q^2) = & \frac{1}{\pi} \int_0^\infty ds \, \frac{\text{Im} \left\{ F_i^{\text{QCDF}}(k^2, s) \right\}}{s - q^2} \\ &+ \frac{1}{\pi} \int_0^{s_0} ds \, \text{Im} \left\{ F_i^{\text{QCDF}}(k^2, s) \right\} \left[\frac{e^{-(s - m_\rho^2)/M^2}}{m_\rho^2 - q^2} - \frac{1}{s - q^2} \right] \end{split}$$

Using the hard-scattering kernels found:

$$F_{i}(n_{+}q, n_{-}q) = \frac{ef_{B}}{m_{B}(n_{+}q)} \int_{0}^{\infty} ds \ T_{i}^{\mathsf{tw2}}\left(\frac{s}{n_{+}q}, n_{+}q, n_{-}q\right) \phi_{+}\left(\frac{s}{n_{+}q}\right) \\ + \frac{ef_{B}}{m_{B}(n_{+}q)} \int_{0}^{s_{0}} ds \ T_{i}^{\mathsf{tw2}}\left(\frac{s}{n_{+}q}, n_{+}q, n_{-}q\right) \phi_{+}\left(\frac{s}{n_{+}q}\right) \\ \left[\frac{s - (n_{+}q)(n_{-}q)}{m_{\rho}^{2} - (n_{+}q)(n_{-}q)}e^{-(s-m_{\rho}^{2})/M^{2}} - 1\right]$$

lead + soft

$$B^- \to \gamma^*(q) [\to \ell^+ \ell^-] W^*(k) [\to \ell'^- \bar{\nu}_{\ell'}]$$

where $q^2=(n_+q)(n_-q)$ and $k^2=m_B(m_B-n_+q)$

- results obtained from an **exponential model** for the LCDA: $\phi_{+}(\omega) = \frac{\omega}{\lambda_{2}^{2}}e^{-\omega/\lambda_{B}}$
- soft corrections under control over all phase space, <5%
- dispersion relation allows extrapolation from negative q² to physical positive q²

- work with form factors in a basis where they are free of kinematic singularities, needed for sum rule
- hard-scattering kernels exhibit a universal ω dependence
- soft contribution under control over all phase space
- currently working on extending to higher twist corrections
- soon will conduct full **phenomenological analysis** for $B \to \ell \nu_{\ell} \ell'^+ \ell'^-$

Extra slides

Extra 1

1

$$\begin{split} T_{\text{hom.}}^{\mu\nu}(k,q) = & \frac{1}{m_B} \left[(k \cdot q) g^{\mu\nu} - k^{\mu} q^{\nu} \right] F_1 \left(k^2, q^2 \right) \\ & + \frac{1}{m_B} \left[\frac{q^2}{k^2} k^{\mu} k^{\nu} - \frac{k \cdot q}{k^2} q^{\mu} k^{\nu} + q^{\mu} q^{\nu} - q^2 g^{\mu\nu} \right] F_2 \left(k^2, q^2 \right) \\ & + \frac{1}{m_B} \left[\frac{k \cdot q}{k^2} q^{\mu} k^{\nu} - \frac{q^2}{k^2} k^{\mu} k^{\nu} \right] F_3 \left(k^2, q^2 \right) \\ & + \frac{1}{m_B} \epsilon^{\mu\nu\rho\sigma} k_\rho q_\sigma F_4 \left(k^2, q^2 \right) \end{split}$$

$$\begin{split} F_V &= F_4, \quad F_{A_\perp} = \frac{(k \cdot q) F_1(k^2, q^2) - q^2 F_2(k^2, q^2)}{(k+q) \cdot q} \,, \\ F_{A_\parallel} &= \frac{q^2 (F_1(k^2, q^2) + F_2(k^2, q^2))}{(k+q) \cdot q} \,. \end{split}$$

¹M. Beneke, P. B"oer, P. Rigatos and K. K. Vos, QCD factoriNeverthelesszation of the four-lepton decay $B^- \rightarrow \ell^- \bar{\nu}_\ell \ell'^+ \ell'^-$, Eur. Phys. J. C 81 (2021) 638, [2102.10060].

It is easy to check that in the limit $q^2 \to 0$ the form factors become $F_{A_{\perp}} = F_1(k^2, q^2)$ and $F_{A_{\parallel}} = 0$. A fourth form factor F_P is not defined in the common decomposition, since it does not contribute in the commonly discussed limit $m_l \to 0$. Nevertheless, it would be expressed in terms of our form factor F_3 .