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µ⃗µ = ±gµ
e

2mµ
S⃗; aµ =

(g − 2)µ
2

Anomalous magnetic moment of the electron is one of the crowning
achievements of Quantum Field Theory

What is the HVP?
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I Fermion-photon coupling (g-factor, etc.)

= + + + . . .

I Vacuum polarization

= + + + . . .

I Hadronic vacuum polarization

= (QED ’n stuff) +
⇡+

⇡�
+ . . .

(Highly subdominant, but currently dominates uncertainty)

Experimental and theoretical calculations agree to about one part in a
trillion.
The anomalous magnetic moment of the muon is sensitive to possible
new states beyond the Standard Model, then provides an interesting
way to probe the new physics.
To compare theory and experiment, highly technical calculations are
involved. QED calculations have to be performed at high order, and
contributions from hadronic physics becomes important at such high
precision.
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The standard model calculation

At the needed precision all the three interactions and all the standard
model particles contribute the the aµ

aSM
µ = aQED

µ + ahadronic
µ + aEW

µ

= O
( α

2π

)
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((α
π

)2
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Mρ

)2
)

+ O

(
α

16π sin2(θW )
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mµ

MW

)2
)

= O
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10−3
)
+ O
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10−7)+ O
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10−9

)
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Confronting Experiment with Theory
QED HadronicElectroweak SUSY ? Some other 

type of new 
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FIG. 13 Representative diagrams contributing to aµ. First column: lowest-order diagram (upper) and first order QED
correction (lower); second column: lowest-order hadronic contribution (upper) and hadronic light-by-light scattering
(lower); third column: weak interaction diagrams; last column: possible contributions from lowest-order supersymme-
try.

The muon magnetic anomaly has recently been measured for positive and negative muons with a relative
precision of 5 × 10−7 by the E821 collaboration at Brookhaven National Laboratory (Muon (g − 2) Coll.,
2004). Combined with the older, less precise results from CERN (Bailey et al., 1977), and averaging over
charges, gives

aexp
µ = (11 659 208.0 ± 5.8) × 10−10 . (60)

Although the accuracy is 200 times worse than aexp
e , aµ is about m2

µ/m2
e # 40, 000 times more sensitive to new

physics and hence a better place (by about a factor of 200) to search for a deviation from the SM expectation.
Of course, strong and electroweak contributions to aµ are also enhanced by m2

µ/m2
e relative to ae; so, they

must be evaluated much more precisely in any meaningful comparison of aSM
µ with Eq. (60). Fortunately, the

recent experimental progress in aexp
µ has stimulated much theoretical improvement of aSM

µ , uncovering errors
and inspiring new computational approaches along the way, among these the use of hadronic τ decays.

It is convenient to separate the SM prediction for the anomalous magnetic moment of the muon into its
different contributions,

aSM
µ = aQED

µ + aweak
µ + ahad

µ , (61)

where aQED
µ = (11 658 472.0 ± 0.2) × 10−10 is the pure electromagnetic contribution (see (Czarnecki and

Marciano, 1999; Hughes and Kinoshita, 1999) and references therein),7 aweak
µ = (15.4 ± 0.1 ± 0.2) × 10−10,

with the first error being the hadronic uncertainty and the second due to the Higgs mass range, accounts for
corrections due to exchange of the weakly interacting bosons up to two loops (Czarnecki et al., 2003) (see
third column in Fig. 13). The term ahad

µ can be further decomposed into

ahad
µ = ahad,LO

µ + ahad,HO
µ + ahad,LBL

µ , (62)

where ahad,LO
µ is the lowest-order contribution from hadronic vacuum polarization and ahad,HO

µ the correspond-
ing higher-order part (Section VI.E). At the 3-loop level in α, the so-called hadronic light-by-light (LBL)

7 An improved calculation including all mass-dependent α4 QED contributions has been published recently with a slightly differ-

ent result (Kinoshita and Nio, 2004): aQED
µ = 116 584 719.58(0.02)(1.15)(0.85) × 10−11. Here, 0.02 and 1.15 are uncertainties

in the α4 and α5 terms, and 0.85 is from the uncertainty in α measured by atom interferometry.
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The hadronic contribution

The uncertainty of the SM prediction is dominated by the hadronic
contributions

aexp
µ − aQED

µ − aEW
µ = 718.6(2.2)× 10−10
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?

The hadronic contributions can be
approached by

1 Lattice QCD (see the talks by
[Lellouch] and [Lupo] at this meeting)

2 Effective QFT with hadrons such as
chiral perturbation theory [this talk]

3 Dispersion relations and experimental
data
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The chiral perturbation theory

From now we will focus on the hadronic contributions at low-energy.
This is subleading but this is where the most uncertainly arise.

I ��������������������������������������������������������������������������

= + + + . . .

I ������������������������������������

= + + + . . .

I ���������������� ������������������������������������

= ������������������������ +
⇡+

⇡�
+ . . .

�������������������������������������������������������������� ���������������������������������������� ��

I ��������������������������������������������������������������������������

= + + + . . .

I ������������������������������������

= + + + . . .

I ���������������� ������������������������������������

= ������������������������ +
⇡+

⇡�
+ . . .

�������������������������������������������������������������� ���������������������������������������� ��We work with chiral perturbation theory which is a low-energy effective
field theory for QCD

LQCD(q, q̄,A) → LχPT (U,∂µU, · · · ) = F 2
0

4
Tr
(
∂µU∂µU†

)
+ higher-order

The pions enter in the parametrisation of U

LχPT = L
χPT
O(p2)

+ L
χPT
O(p4)

+ L
χPT
O(p6)

+ L
χPT
O(p8)

+ · · ·

▶ The EFT lagrangian is ordered in powers of the momentum
▶ At each order arise new low-energy constants (from UV

counter-terms) that are determined by matching physical
quantities [Gasser, Leutwyler], [Bijnens, Colangelo, Ecker], [Bijnens, Hermansson-Truedsson, Wang]
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Why do this ?

An quick estimation of the contributions to the hadronic vacuum
polarisation in perturbation shows that the (N3LO) three-loop
contribution will bring the theoretical uncertainly from finite volume
effects to match the experimental uncertainty
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(NLO) One- and (N2LO) two-loop order

We work in the two-flavor chiral perturbation theory in the isospin limit,
describing an SU(2) triplet of pion fields of mass M coupled to an
external, non-dynamic photon field Aµ.

0 1 2 3 4

0

0

1

Table 1: All NLO (top) and NNLO (bottom) diagrams, sorted by ascending number of

loops, then roughly by complexity. Unmarked vertices are LO, dots NLO, and squares

NNLO. The rows and columns are numbered so that individual diagrams can be easily

referenced, such as “14” for the double bubble. The mirror images of the non-symmetric

diagrams (03 and 12) are not listed independently. Note that all 2-loop diagrams factor

into 1-loop integrals; there are no sunset diagrams.

counterparts F and M via

M2
0 → M2

[
1 +

→∑

i=1

ωiεMi

]
, F0 → F

[
1 +

→∑

i=1

ωiεFi

]
, (2.9)

where ω := ϑM2/F 2; the ε expressions are given below. NkLO mass and decay constant

renormalization entails keeping terms up to and including ωk in this expression, and must

be applied in consistency with the total power counting budget. Thus, an NkLO amplitude

is obtained from Nk→
LO diagrams with Nk↑k→

LO mass and decay constant renormalization,

summed over all k↓ ↑ k.

Given the lack of LO diagrams in our case, we only need mass and decay constant

renormalization up to NNLO. This was first determined by Bürgi [12], although we use the

form given along with the N3LO case in ref. [6]:

εMi =

i∑

j=0

bM
ij Li , εFi =

i∑

j=0

bF
ijL

i , (2.10)

– 4 –

There is no (LO) tree-level contributions because we only have the
pions. At (NLO) 1-loop and (N2LO) 2-loop we only have contributions
from two pions production µ+µ− → 2π+ γ
This is known from the works of [Gasser, Leutwyler], [Bijnens]
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The new contribution at
(N3LO) three loops and
the main topic of this
talk and work to appear
with members of the
BMW collaboration
[Lellouch, Lupo,

Portelli, Sjö, Szabo,

Vanhove]

At this order opens the
new four π
intermediate state

µ+µ− → 4π+ γ

0 1 2 3 4

0

1

2

3

4

5

6

7

8

9

10

Table 2: All N3LO diagrams, presented similarly to table 1. The triangle represents a

N3LO vertex. The rows and columns are numbered so that individual diagrams can be

easily referenced. The mirror images of the non-symmetric diagrams (03, 13, 32–41, etc.)

are not listed independently. Note that, unlike at NNLO, there are six 3-loop diagrams

(91–101) which do not factor into 1-loop integrals.

– 5 –

NNNLO contributions
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The three-loop amplitude in details

Iν1,··· ,ν9(q
2,M2) =

∫
dDℓ1dDℓ2dDℓ3∏9

i=1(k
2
i − M2)νi

This is the top (most complicated) topology arising from the Feynman
graphs that is dressed by the vertices from ChPT using a FORM code
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The three-loop amplitude in detailsA tour of our masters

The integrals 34/46

The IBP integral reduction is
done with LiteRed give 11
scalar master integrals

Pierre Vanhove (IPhT) HVP (g − 2)µ 9/07/2025 10 / 17



Masters: tadpoles and bubblesMasters: the easy ones

The integrals 35/46

= I3
1,0 = I2

1,0I1,1

= I1,0I
2
1,1 = I3

1,1

I Divergent but simple
I Bubble integral required up to O(✏2)

I Just a pile of (poly)logarithms

Masters: the easy ones

The integrals 35/46

= I3
1,0 = I2

1,0I1,1

= I1,0I
2
1,1 = I3

1,1

I Divergent but simple
I Bubble integral required up to O(✏2)

I Just a pile of (poly)logarithms

▶ Divergent but simple product of tadpole and bubble
▶ Just multiple polylogarithms function of t = p2/M2

I (4 − 2ϵ; t) =
i exp

[∑∞
k=2(−ϵ)

k ζ(k)
k

]

ϵ

[
1 +

∞∑
n=1

(−ϵ)n J(n)
(t)

n!

]
,

J(n)
(t) =

∫1

0
(log(1 − x(1 − x)t))ndx
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Masters: the motivic K3 period integrals

It’s expansion near four dimension D = 4 − 2ϵ reads

E1(4 − 2ϵ; t) =
2
ϵ3 +

23 − t
3ϵ2 +

t2 − 54t + 18π2 + 630
36ϵ

+ Ē1(t) + O(ϵ)

The finite piece Ē1(t) involves a new kind of integral obtained from to
motivic relative periods of a K3 surface of Picard number 19 arising
from the singularities of the 3-loop sunset integral [Bloch, Kerr,

Vanhove]

From general consideration is it expected that higher loop integrals are
associated with Feynman Calabi-Yau geometry.
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The finite piece in four dimensions is a combination of the masters in
two dimensions

E1(2; t) =

(
η(q2)η(q6)

)4

(η(q)η(q3))
2


∑

n⩾1

ψ(n)
n3

qn

1 − qn − 4(log q)3 + 16ζ(3)




The (mirror) map between t = p2/M2 and the complex structure of the
K3 surface

t =
p2

M2 = −

(
η(q)η(q3)

η(q2)η(q6)

)6

; η(q) = q
1
24

∞∏
n=1

(1 − qn)

Re(z)

Im
(z

)

→2 0 2 4 6 8 10

→2

0

2

Figure 6: The function ωF (z), visualized over the same region as ω4(z) in fig. 5. The

constant F1(1) has been subtracted to make the features more visible. The upper half-

plane shows ωF (z) as used for the t ↑↓ ε relation, and the lower shows the uncorrected

F1

(
1728/j (z)

)
using the principal branch of the hypergeometric function. Both are sym-

metric (up to phases) across the real axis.

ϑ

Re(z)

Im
(z

)

→2 0 2 4 6 8 10

→2

0

2

Figure 7: A schematic version of fig. 6, showing the construction of the correct ωF (z).

The lines indicate where 1728/j (z) (the argument of the hypergeometric functions) is

real using the same conventions as in fig. 5: dotted for no cut, solid for removed cut, zigzag

for remaining cut. Negative real values only produce a cut for F2(z) and therefore do not

a!ect the principal branch (ϑ), which is purely F1(z). Positive real values only produce

a cut when |1728/j (z)| ↔ 1, which holds within the shaded area. The monodromies

described in the text are used when crossing the solid lines to keep ωF (z) continuous: C0

(↓) or C1 (↗) is applied when going in the direction of the arrows (recall that C1 is its

own inverse, hence the bidirectional arrow).

– 42 –
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Masters: the motivic K3 periods integrals

Masters: um, this thing?

The integrals 37/46

= I1,1,0,1,0,0,1,1,0

I Less well-studied, no explicit solution known before
I Solved in this work in similar terms as I

I Interestingly, 4D version does not require 2D version:

I1,1,0,1,0,0,1,1,0(d ) ⇠ (4� d )I1,1,0,1,0,0,1,1,0(d � 2) + . . .

…but it appears elsewhere

⌘ I (����) ⇠ I0 (����)

I ��������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������

I ���������������������������������������������������������� ������������������ ������������������
����������������

I �������������������� ����������������������������������������������������������������������

⌘ I (����) ⇠ I0 (����)

I ��������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������

I ���������������������������������������������������������� ������������������ ������������������
����������������

I �������������������� ����������������������������������������������������������������������

The other master are obtained by either differentiation or integration of
E1.
Their expansion near D = 4 reads

Er (4 − 2ϵ; t) =
c(3)

r (t)
ϵ3 +

c(2)
r (t)
ϵ2 +

c(1)
r (t)
ϵ

+ Ēr (t) + O(ϵ)
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The total amplitude

The complete amplitude at 3-loop takes the form

ΠT (t) =
r2t2

ϵ3 +
C(2)(t)
ϵ2 +

C(1)(t)
ϵ

+ ΠT
finite(t)

▶ The leading divergence r2t2 produces a new combination of
low-energy constants.

▶ The subleading divergences C(2)(t), C(1)(t) are cancelled by the
counter-terms from the lower loop low-energy constants. These
constant are known from previous work extracted from the pion
radius [Bijnens et al.]

▶ The finite piece ΠT
finite(t) is composed : polylogarithms functions

and elliptic functions from the K3 motivic periods
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The dispersive relation

Dispersion relation connect the imaginary part of the amplitude to aHPV
µ

aHPV
µ =

1
π

∫∞
4m2

π0

dt
t
ℑmΠT (t)

∫1

0
dz

z2(1 − z)
z2 + (1 − z)t/m2

µ

The imaginary part of the amplitude gives the cross-section of pions
emission

ℑmΠT (s) =
1

12π
σ0(e+e− → γ∗ → n − π+ γ)

σ0(e+e− → µ+µ−)︸                      ︷︷                      ︸
4πα2

3s

▶ NLO and N2LO: µ+µ− → 2π+ γ

▶ N3LO: a new channel opens µ+µ− → 4π+ γ
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Conclusion and outlook

With this complete evaluation of the N3LO contribution to the hadronic
vacuum polarisation in chiral perturbation theory from pions allows
(works to appear in [Lellouch, Lupo, Portelli, Sjö, Szabo, Vanhove])
▶ A fast high-precision evaluation using python based routines and
sagemath

▶ An evaluation of the 4 pions cross-section production
µ+µ− → 4π+ γ: the new low energy constants do not arise so
everything needed is known

▶ An evaluation of the finite volume effects and reach the
resquested target for uncertainty control

Метод важнее открытия, ибо правильный метод
исследования приведет к новым, еще более ценным
открытиям. (Л. Д. Ландау)
from http://www.famhist.ru/famhist/landau/000738b2.htm

Pierre Vanhove (IPhT) HVP (g − 2)µ 9/07/2025 17 / 17

https://www.sagemath.org
http://www.famhist.ru/famhist/landau/000738b2.htm


Conclusion and outlook

With this complete evaluation of the N3LO contribution to the hadronic
vacuum polarisation in chiral perturbation theory from pions allows
(works to appear in [Lellouch, Lupo, Portelli, Sjö, Szabo, Vanhove])
▶ A fast high-precision evaluation using python based routines and
sagemath

▶ An evaluation of the 4 pions cross-section production
µ+µ− → 4π+ γ: the new low energy constants do not arise so
everything needed is known

▶ An evaluation of the finite volume effects and reach the
resquested target for uncertainty control

A method is better than a discovery, because a good
method can lead to new results, and much more
valuable discoveries. (L. D. Landau)
from http://www.famhist.ru/famhist/landau/000738b2.htm
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