Probing nPDF and fully coherent radiation through electromagnetic signals at the LHC

François Arleo

Subatech, Nantes

EPS-HEP 2025

Marseille, July 2025

Work in progress with D. Bourgeais, M. Guilbaud, G. Jackson, V. Valencia

nuclear Parton Distribution Functions

- Parton distribution functions are modified in nuclei
 - Evidence at large x from EMC/NMC measurements in DIS
 - Expected depletion at small x (shadowing)
- nPDF cannot be calculated, extracted from data global fits
 - F_2 in eA, Drell-Yan, W/Z, jets, hadrons in pA collisions
 - Several sets: nCTEQ15, EPPS21, nNNPDF3.0...

nuclear Parton Distribution Functions

• Poor constraints from data at small *x* nNNPDF, 2201.12363

- Strong constraints given by forward D-meson LHCb data
 - key measurements... but affected by fully coherent energy loss

Fully Coherent Energy Loss

• Induced gluon radiation due to multiple scattering in nuclei

- Average energy loss $\Delta E_{
 m FCEL} \propto lpha_s \; (Q_s/M_{\perp}) \; E$
 - \blacktriangleright Important at all collision energies, especially at large y
- Needs color in both initial & final state
 - No effect in DIS on nuclei nor Drell-Yan at leading order
- Applied to a variety of processes in pA collisions
 - quarkonia (2012-2014), light hadrons (2020), open heavy-flavour hadrons (2021), atmospheric neutrinos from π/D decays (2021)

Which nPDF global fit strategy

- Given the existence of FCEL, how should nPDF be extracted?
- \checkmark Include FCEL in the pQCD calculation and then extract nPDF
 - Stronger constraints from all measurements available
 - First attempt using J/ψ data

4 / 13

Which nPDF global fit strategy

François Arleo

Probing nPDF and fully coherent radiation with photons EPS-HEP 2025 4 / 13

Which nPDF global fit strategy

- Given the existence of FCEL, how should nPDF be extracted?
- \checkmark Include FCEL in the pQCD calculation and then extract nPDF
 - Stronger constraints from all measurements available
 - First attempt using J/ψ data
- ✓ Investigate only observables poorly sensitive or insensitive to FCEL
 - ► F₂ in DIS, weak bosons, jets in pA collisions
 - ► prompt photons and Drell-Yan stalk

Prompt photons and nPDF

- Prompt photons in pA long been thought as a good probe of nPDF FA Gousset 2008, FA Eskola Paukkunen Salgado 2011, Helenius Eskola Paukkunen 2014
 - Sensitive to the gluon nPDF through Compton scattering $qg
 ightarrow q\gamma$
 - nPDF at small x and small Q accessible at LHC
 - recent measurements at low p_{\perp} by ALICE

Helenius Eskola Paukkunen 1406.1689

ALICE 2502.18054

5 / 13

Prompt photons and nPDF

- Prompt photons in pA long been thought as a good probe of nPDF FA Gousset 2008, FA Eskola Paukkunen Salgado 2011, Helenius Eskola Paukkunen 2014
 - Sensitive to the gluon nPDF through Compton scattering $qg
 ightarrow q\gamma$
 - nPDF at small x and small Q accessible at LHC
 - recent measurements at low p_{\perp} by ALICE

INF What about FCEL effects on prompt photons?

Modelling FCEL quenching

For a generic scattering channel α : $ab \rightarrow [c(\xi)d(1-\xi)]_R$

$$\frac{\mathrm{d}\sigma_{\mathrm{pA}}^{\mathrm{R}}(y)}{\mathrm{d}y\,\mathrm{d}\xi} = \int_{0}^{x_{\mathrm{max}}} \mathrm{d}x \, \frac{\mathcal{P}_{\mathrm{R}}(x)}{1+x} \, \frac{\mathrm{d}\sigma_{\mathrm{pp}}^{\mathrm{R}}(y+\ln(1+x),\xi)}{\mathrm{d}y\,\mathrm{d}\xi}$$
$$\mathcal{P}_{\mathrm{R}}(\epsilon) \simeq \frac{\mathrm{d}I(\epsilon)}{\mathrm{d}\epsilon} \bigg|_{\mathrm{R}} \exp\left\{-\int_{\epsilon}^{\infty} \mathrm{d}\omega \, \frac{\mathrm{d}I(\omega)}{\mathrm{d}\omega}\bigg|_{\mathrm{R}}\right\}$$
$$\omega \, \frac{\mathrm{d}I}{\mathrm{d}\omega}\bigg|_{\mathrm{R}} \simeq (C_{\mathrm{a}} + C_{\mathrm{R}} - C_{\mathrm{b}}) \, \frac{\alpha_{s}}{\pi} \left[\ln\left(1 + \frac{Q_{sA}^{2}}{M_{\xi}^{2}} \frac{E^{2}}{\omega^{2}}\right) - \mathrm{pp}\right]$$

FA Peigné 1212.0434

- Valid in the pointlike dijet approximation for which gluon radiation does not probe the dijet
- Induced gluon spectrum computed beyond the pointlike approximation for a generic process $12 \rightarrow 3 \dots n$ Jackson Peigné Watanabe 2312.11650

Modelling FCEL quenching

For a generic scattering channel α : ab $\rightarrow [c(\xi) d(1-\xi)]_R$

$$\frac{\mathrm{d}\sigma_{\mathrm{pA}}^{\mathrm{R}}(y)}{\mathrm{d}y\,\mathrm{d}\xi} = \int_{0}^{x_{\mathrm{max}}} \mathrm{d}x \ \frac{\mathcal{P}_{\mathrm{R}}(x)}{1+x} \ \frac{\mathrm{d}\sigma_{\mathrm{pp}}^{\mathrm{R}}(y+\ln(1+x),\xi)}{\mathrm{d}y\,\mathrm{d}\xi}$$

 $\bullet\,$ Summing over the color probabilities $\rho_{{\rm R}_\alpha}$ for a given channel

$$R^{lpha}_{\mathsf{p}\mathsf{A}}(y, p_{\perp}) \simeq \sum_{\mathsf{R}_{lpha}} \,
ho_{\mathsf{R}_{lpha}}(\xi) \, R^{\mathsf{R}_{lpha}}_{\mathsf{p}\mathsf{A}}(y, p_{\perp})$$

 \bullet Summing over scattering channels α

$$R_{\mathsf{p}\mathsf{A}}(y, p_{\perp}) \simeq \sum_{\alpha} f_{\alpha}(y, p_{\perp}) \sum_{\mathsf{R}_{\alpha}} \rho_{\mathsf{R}_{\alpha}}(\xi) R_{\mathsf{p}\mathsf{A}}^{\mathsf{R}_{\alpha}}(y, p_{\perp})$$

• Channel fractions f_{α} computed in pQCD at LO

Prompt photons at leading order

- 2 direct photon channels at LO: Compton scattering and annihilation
 - Different color representations R... but only 1 irrep per channel
 - Crucial difference between $q^p g^A$ and $g^p q^A$ scattering

Process	Initial state	R	Color factor
Compton	$g^{ p} q^{A} o q \gamma$	3	$N_c + C_F - C_F = N_c$
	$q^{p}g^{A} o q\gamma$	3	$C_F + C_F - N_c = -1/N_c$
Annihilation	$q^{p}ar{q}^{A} o g\gamma$	8	$C_F + N_c - C_F = N_c$
	$ar{q}^{p} q^{A} o g \gamma$	8	$C_F + N_c - C_F = N_c$

Competition between Fully Coherent Energy Loss (FCEL) and Fully Coherent Energy Gain (FCEG)

Prompt photons at leading order

- $q^{p} g^{A} \rightarrow q \gamma$ naturally dominates at forward rapidity
 - Mostly energy gain at y > 0 and energy loss at y < 0
- Little PDF & scale dependence on the channel fractions

François Arleo

FCEL/FCEG effects on prompt photons

Rapidity dependence

Stronger effect at negative rapidity

• $R_{\rm pA} \simeq 0.94 - 0.96$ at y = -5 and $p_{\perp} = 5$ GeV

- At positive rapidity, FCEL and FCEG mostly compensate
- Small theoretical uncertainty

François Arleo

FCEL/FCEG effects on prompt photons

Transverse momentum dependence

- Tiny effect at large p_{\perp} $(\Delta E \propto Q_s/p_{\perp})$
- Larger scale dependence at small p_{\perp} and forward rapidity

- Energy loss (gain) effects on prompt photons small but not negligible
- ... but effects on Drell-Yan should be vanishingly small
 - At LO, $q\bar{q} \rightarrow \gamma^{\star}$ insensitive to FCEL
 - At NLO, real emission should lead to $\Delta E \propto Q_s/\sqrt{Q^2+p_\perp^2} \ll 1$
 - Low mass DY in pA collisions at LHC ideal probe of nPDF at small x

FA Peigné, 1512.01794

LHC data

- CMS data in pPb collisions (M > 15 GeV) CMS 2102.13648
- LHCb data in pp collisions at low mass LHCb-CONF-2012-013
- Prospects to measure low-mass DY in pPb with LHCb Runs 3/4 data

LHCb-CONF-2018-005

Going virtual: Drell-Yan process

- Energy loss (gain) effects on prompt photons small but not negligible
- ... but effects on Drell-Yan should be vanishingly small
 - At LO, $q\bar{q} \rightarrow \gamma^{\star}$ insensitive to FCEL
 - At NLO, real emission should lead to $\Delta E \propto Q_s/\sqrt{Q^2 + p_\perp^2} \ll 1$
 - \blacktriangleright Low mass DY in pA collisions at LHC ideal probe of nPDF at small x

Probing nPDF and fully coherent radiation with photons

nPDF constraints from DY data

nPDF reweighted according to LHCb Run 3 pseudo-data

 DY computed in pQCD at NLO using DYTurbo and various nPDF sets (EPPS16, nCTEQ15WZ, nNNPDF3.0)

Pseudo-data generation

• Central value given by the average of 3 random nPDF members

$$R_{\rm pA} = \frac{1}{3} \left[R_{\rm pA}^{\rm EPPS16}(k) + R_{\rm pA}^{\rm nCTEQ15WZ}(\ell) + R_{\rm pA}^{\rm nNNPDF}(m) \right]$$

• Statistical uncertainty obtained from Run 3 luminosity and S/B

$$\delta N_j^{\text{stat}} = \sqrt{\mathcal{L}_{\text{Run 3}} N_j \left[1 + \frac{1}{(S/B)_{j,\text{eff}}}\right]}; (S/B)_{j,\text{eff}} = 1/30$$

nPDF constraints from DY data

nPDF reweighted according to LHCb Run 3 pseudo-data

 DY computed in pQCD at NLO using DYTurbo and various nPDF sets (EPPS16, nCTEQ15WZ, nNNPDF3.0)

Pseudo-data generation

François Arleo

Probing nPDF and fully coherent radiation with photons

Reweighting

Using nNNPDF3.0_noD set for the illustration

Reweighting

- $\bullet\,$ Significant constraints for both quarks and gluons at small x
- Reminiscent of the constraints from D-mesons, slightly looser...
- ... yet maybe more reliable since unspoiled by FCEL effects

François Arleo

- Prompt photons proposed as a good probe of nPDF
 - \blacktriangleright ... but might be affected by FCEL/G
- FCEL/G effects on prompt photons in pA collisions estimated
 - ▶ Small but non negligible effect, especially at low p_{\perp} and y < 0
 - Result from a subtle interplay of energy loss and energy gain processes
 - Role of fragmentation photons currently investigated
- Drell-Yan data as the most promising nPDF probe
 - Insensitive to fully coherent medium-induced radiation
 - nPDF reweighting using realistic Run 3 LHCb pseudo-data
 - Significant constraints on both quark and gluon nPDF at small x

Including isospin effects

• Prompt photons suppressed at large negative y due to isospin effects • $\sigma(pn \rightarrow \gamma X) < \sigma(pp \rightarrow \gamma X)$ as d(x) < u(x) at large x

• Large effect but small uncertainty

François Arleo

13 / 13