

Contribution ID: 791

Type: Parallel

Gluon shadowing in nuclei and the role of the $c\bar{c}g$ state in the coherent photoproduction of J/ψ in nucleus-nucleus collisions

We studied the diffractive photoproduction of J/ψ mesons at the highest available energies. The data from ultraperipheral collisions (UPCs) are well described at high energies/small-x after including additional shadowing from the $c\bar{c}g$ Fock state.

We confront our results on diffractive photoproduction of J/ψ mesons with the putative gluon shadowing ratio defined as $R_g = \sqrt{\sigma(\gamma A \rightarrow J/\psi A)/\sigma_{IA.}}$, where σ_{IA} is the result in impulse approximation. Building on our earlier description of the process in the color-dipole approach, where we took into account the rescattering of $c\bar{c}$ states only, we demonstrate that the inclusion of $c\bar{c}g$ -Fock states improves the description at small x commonly associated with gluon shadowing. The results are published in Phys.Lett.B 856 (2024) 138917.

Secondary track

T04 - Ultra-relativistic Nuclear Collisions

 Author:
 LUSZCZAK, Agnieszka (Cracow University of Technology)

 Co-author:
 SCHAEFER, Wolfgang (Institute of Nuclear Physics PAN, Krakow)

Session Classification: T04

Track Classification: T04 - Ultra-relativistic Nuclear Collisions