General Linblad equation for in-QGP quarkonia evolution

EPS-HEP 2025 ; Marseille (France)

P.B. Gossiaux pour A. Daddi Hammou SUBATECH, UMR 6457 IMT Atlantique, IN2P3/CNRS, Nantes University

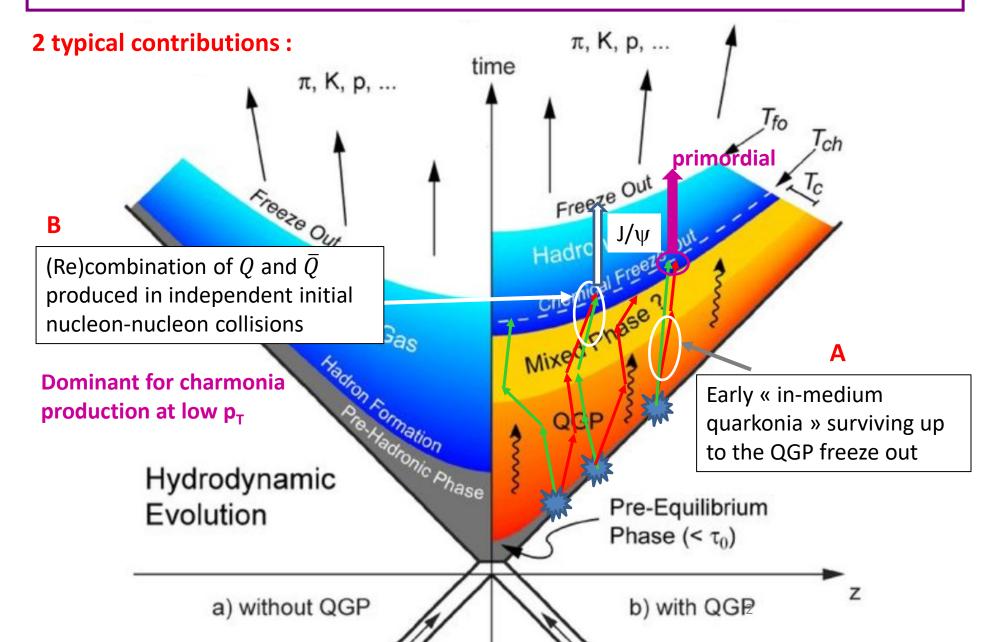
Goal: Describe the entire time evolution of in-QGP quarkonia...

...through a general Lindblad equation, encompassing both the high and low T regimes.

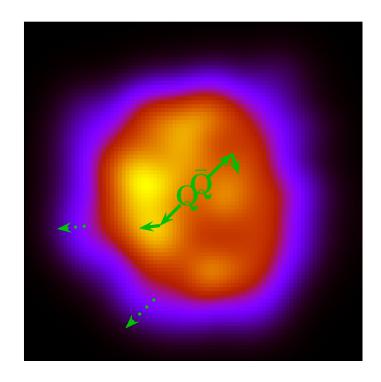
- 1. Pretty longuish introduction and motivation
- 2. Indecipherable derivation of a Universal Lindblad equation
- 3. Some illustration

With: J.P. Blaizot, Th. Gousset

Probing URHIC with quarkonia production



What is a quarkonia... in a hot QGP medium ?



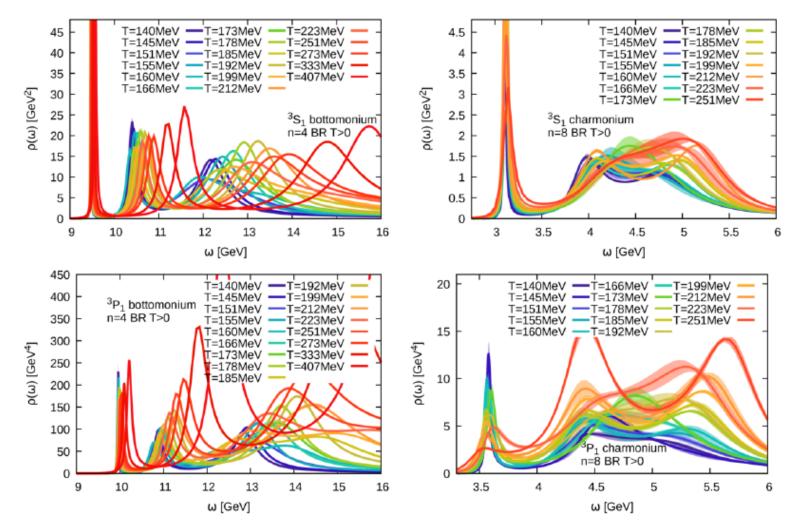
Answer may vary depending on how hot is the QGP, and how long you observe

Not too high T, not too long : Same as in vacuum + some external perturbation

If not : probably better to speak a $Q\bar{Q}~$ pair

When is it legitimate to speak of a bound state ?... And deal with it as such in the transport theory. Answer may vary depending on the fundamental ingredients

IQCD perspective : spectral function



Kim et al, JHEP11(2018)088

Many such kind of results in

the literature

Rich structure : broadening and mass shift. What are the underlying "ingredients"?

The 3 pillars of quarkonia production in AA

The present challenges for Quarkonium modelling in URHIC

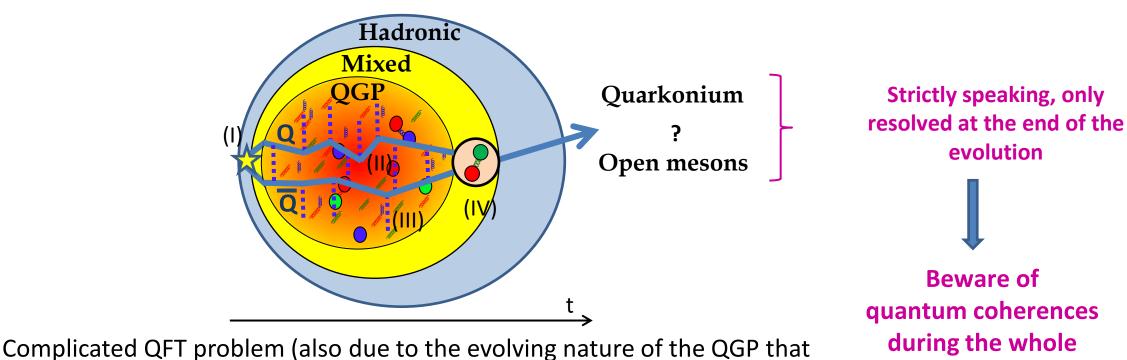
Meet the higher and higher precision of experimental data (already beyond the present model uncertainties)

Unravel the Q-Qbar interactions under the influence of the surrounding QGP and with the QGP

Need for IQCD constraints / inputs

Develop a scheme able to deal with the evolution of one (or many) $Q\overline{Q}$ pair(s) in a QGP, fulfilling all fundamental principles (quantum features, gauge invariance, equilibration,...)

The full transport scheme



mixes several scales)... only started to be addressed at face value recently

- 1) Initial state
- 2) (Screened) interaction between both HQ
- 3) Interactions with surrounding QGP partons
- 4) Projection on the final quarkonia

How to proceed ?

Especially at early time...

evolution !

In practice, what counts is the so-called decoherence time, not the "Heisenberg time"

First incomplete QM treatments dating back to Blaizot & Ollitrault, Thews, Cugnon and Gossiaux; early 90's

Reminder : the density operator

- > One has to deal with statistical averaging of a Q-Qbar subsystem in a QGP...
- \blacktriangleright Operationnally, this **cannot** be treated dealing with usual quantum states $|\psi\rangle = |\psi_{Q\bar{Q}}| \otimes |\psi_{QGP}\rangle$
- One needs to resort to the density operator / matrix
 - ✓ Simple form (pure state) : $\hat{\rho}_{Q\bar{Q}} = |\psi_{Q\bar{Q}}\rangle\langle\psi_{Q\bar{Q}}|$
 - $\checkmark \text{ More involved form : } \hat{\rho}_{Q\bar{Q}} = \sum_{\alpha,\beta} d_{\alpha,\beta} |\alpha_{Q\bar{Q}}\rangle \langle \beta_{Q\bar{Q}} |$

QME deal with the (coupled) evolution of probabilities $(d_{\alpha,\alpha})$ and "quantum coherences" $(d_{\alpha,\beta\neq\alpha})$

 \blacktriangleright Probability to observe a quarkonium Φ in a given Q-Qbar state

 $\operatorname{prob}(\Phi) = \langle \psi_{\Phi} | \hat{\rho}_{Q\bar{Q}} | \psi_{\Phi} \rangle = \operatorname{tr}(\hat{\rho}_{Q\bar{Q}} \hat{\rho}_{\Phi})$ Should be always positive !

First incomplete QM treatments dating back to Blaizot & Ollitrault, Thews, Cugnon and Gossiaux; early 90's EPS-HEP 2025

Open Quantum Systems & Quantum Master Equations

 $\mathcal{H}_{\mathrm{int}}$ Quite generally, system (Q-Qbar pair) builds correlation with the environment thanks syster to the Hamiltonian $\hat{H} = \hat{H}^{(0)}_{O\bar{O}} + \hat{H}_E + \hat{H}_{int}$ with $\hat{H}_E = \hat{H}_{QGP}$ Von Neumann equation for the total density operator ρ $\frac{\mathrm{d}}{\mathrm{d}t}\rho = -i[H,\rho]$ System + environment Evolution of the total system (QGP) $\rho(t) = U(t,0) \left[\rho_{O\bar{O}} \otimes \rho_{QGP} \right] U(t,0)^{\dagger}$ $\rho(t=0) = \rho_{O\bar{O}} \otimes \rho_{QGP}$ Trace out QGP degrees of freedom => Reduced density operator $\rho_Q \bar{Q}$ Can be formulated Evolution of the system System (QQ pair) differentially ./. time : $\frac{\mathrm{d}\rho_{Q\bar{Q}}}{\mathrm{d}t} = \mathcal{L}[\rho_{Q\bar{Q}}]$ $\rho_{O\bar{O}}(t) = \operatorname{Tr}_{QGP}\left[U(t,0)\rho(t=0)U(t,0)^{\dagger}\right]$ $\rho_{O\bar{O}}(t=0)$ Definition of $\mathcal{L}[\cdot]$

EPS-HEP 2025 However, $\mathcal{L}[\cdot]$ is generically a non local super-operator in time (linear map)

environment

A special Quantum Master Equation: The Lindblad Equation

There are many different QME... a special one :

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}(t)\right] + \sum_{i}\gamma_{i}\left[L_{i}\rho_{Q\bar{Q}}(t)L_{i}^{\dagger} - \frac{1}{2}\left\{L_{i}L_{i}^{\dagger},\rho_{Q\bar{Q}}(t)\right\}\right]$$

 $\gamma_{\rm i}$ Characterize the coupling of the system (Q-Qbar) with the environment

$$H_{Q\bar{Q}} : \{Q, \bar{Q}\} \quad \underbrace{ \text{kinetics + Vacuum potential V}}_{\hat{H}_{Q\bar{Q}}^{(0)}} + \underbrace{ \text{Lamb shift / screening}}_{\hat{H}_{Q\bar{Q}}^{(0)}} \text{ (every unitary term that is generated by tracing out the environment \Leftrightarrow Von Neumann)$$

 L_i : Collapse (or Lindblad) operators, depend on the properties of the medium 3 important conservation properties :

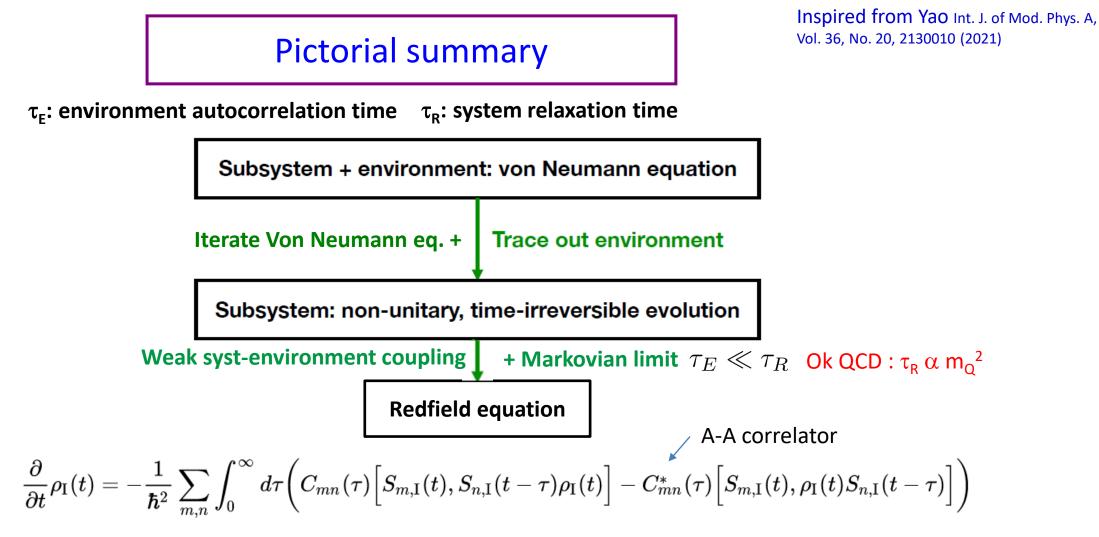
$$\begin{split} \rho_{Q\bar{Q}}^{\dagger} &= \rho_{Q\bar{Q}} & & \mathrm{Tr}[\rho_{Q\bar{Q}}] = 1 & & \langle \varphi | \rho_{Q\bar{Q}} | \varphi \rangle > 0, \forall | \varphi \rangle \\ \text{(Hermiticity)} & & \text{(Norm)} & & \text{(Positivity)} \end{split}$$

... but in general, non unitary !!! (relaxation)

<u>Nice feature</u>: Can be brought to the form of a stochastic Schroedinger equation (quantum jump method : QTRAJ) => more effective numerically

A special QME: The Lindblad Equation

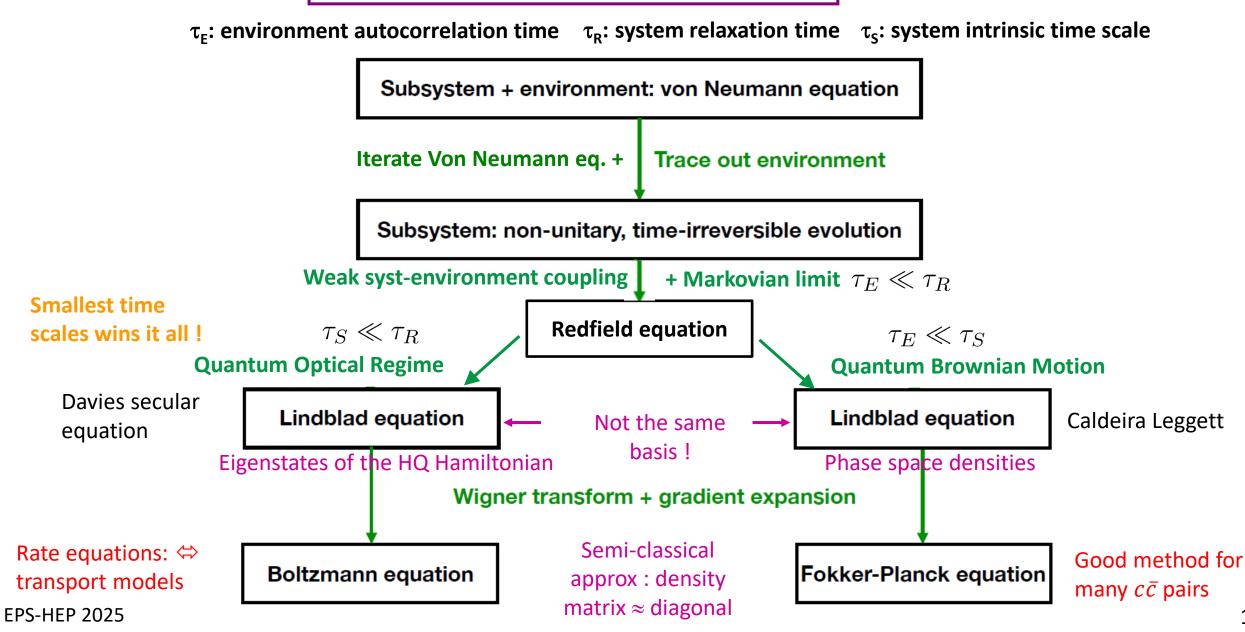
Non unitary / dissipative evolution \equiv decoherence $\frac{\mathrm{d}}{\mathrm{d}t}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}(t)\right] + \sum_{i}\gamma_{i}\left[L_{i}\rho_{Q\bar{Q}}(t)L_{i}^{\dagger} - \frac{1}{2}\left\{L_{i}L_{i}^{\dagger},\rho_{Q\bar{Q}}(t)\right\}\right]$ Can be reshuffled into non Genuine transitions Hermitic effective hamiltonian ✓ Singlet <-> octet \checkmark Octet <-> octet $\hat{H}_{Q\bar{Q},\text{eff}} = \hat{H}_{Q\bar{Q}} - i \left[\sum_{j} \gamma_j \frac{L_j L_j^{\dagger}}{2} \right] \equiv \text{Dissociation width}$ Indeed, starting from a singlet density matrix : $ho_{Q\bar{Q}}^{
m s}=|s
angle\langle s|$, one generates an octet composant : $\frac{\mathrm{d}}{\mathrm{d}t}\langle o|\rho_{Q\bar{Q}}|o\rangle = \sum_{i}\gamma_{i}\langle o|L_{i}|s\rangle\langle s|L_{i}^{\dagger}|o\rangle = \sum_{i}\gamma_{i}|\langle o|L_{i}|s\rangle|^{2}$ Usual transition rate Starting from generic $\hat{H} = \hat{H}_{Q\bar{Q}}^{(0)} + \hat{H}_E + \hat{H}_{int}$ with $\hat{H}_{int} = \sum A_{QGP} \times S$ how to obtain a Linblad equation ? QGP operator (field) Q-Qbar operator (charge) **EPS-HEP 2025**



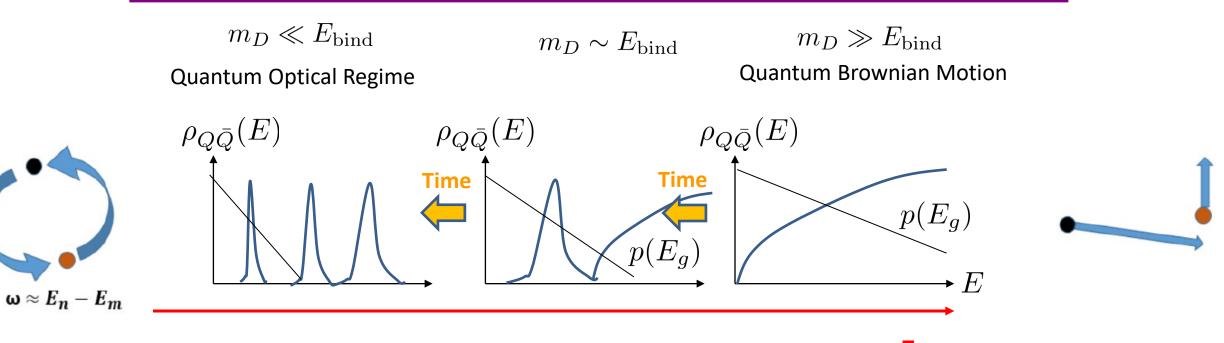
Some similitude with the Linblad equation but with time delay effects => Not Lindbladian

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{Q\bar{Q}}(t) = -i\left[H_{Q\bar{Q}},\rho_{Q\bar{Q}}(t)\right] + \sum_{i}\gamma_{i}\left[L_{i}\rho_{Q\bar{Q}}(t)L_{i}^{\dagger} - \frac{1}{2}\left\{L_{i}L_{i}^{\dagger},\rho_{Q\bar{Q}}(t)\right\}\right]$$

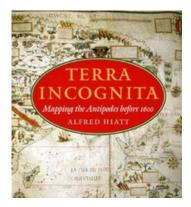
Pictorial summary



Two types of dynamical modelling



Dissociation of well identified levels by scarce "high-energy" modes (dilute medium => cross section ok). Best described using the eigenstates of the $H_{O\overline{O}}$



Multiple scattering on quasi free states. Best described in positionmomentum space

QCD time scales

 τ_{E} : environment autocorrelation time

$$au_E pprox rac{1}{m_D} pprox rac{1}{CT} pprox rac{1}{T}$$
 (C taken as close to unity)

 τ_s : system intrinsic time scale

$$\tau_S \approx \frac{1}{\Delta E} \approx \frac{1}{m_Q v^2}$$
 with $v \approx \alpha_S$... at the beginning of the evolution

Difference btwn energy levels

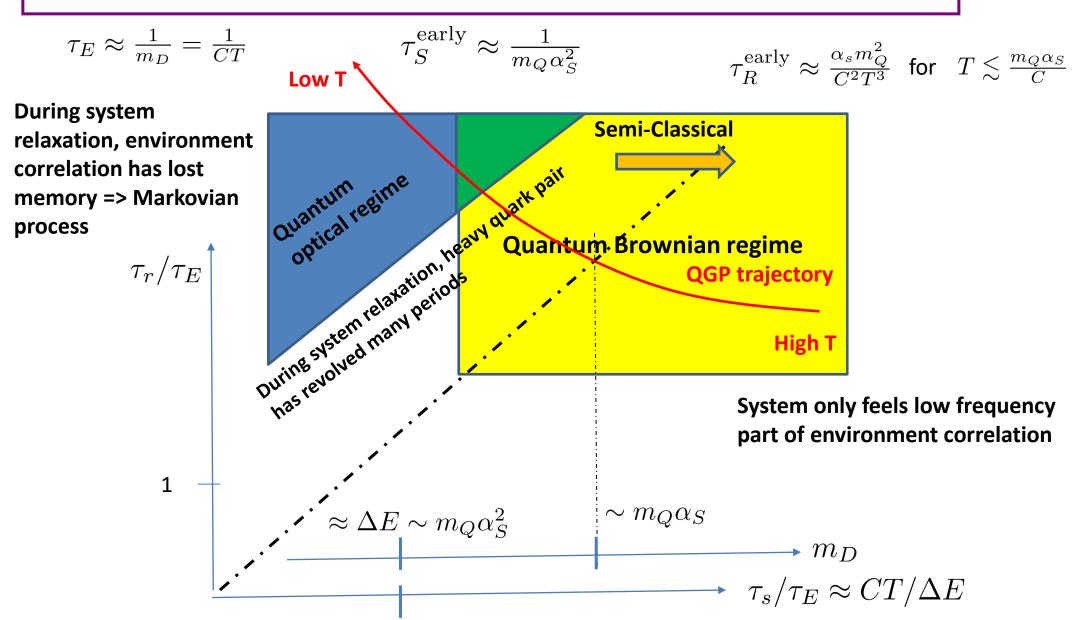
 τ_{R} : system relaxation time

$$\Gamma = \tau_R^{-1} \sim 2\langle \psi | W\psi \rangle \approx \alpha_s T \times \Phi(m_D r) \approx \alpha_s T \times \Phi(\frac{CT}{m_Q \alpha_s})$$

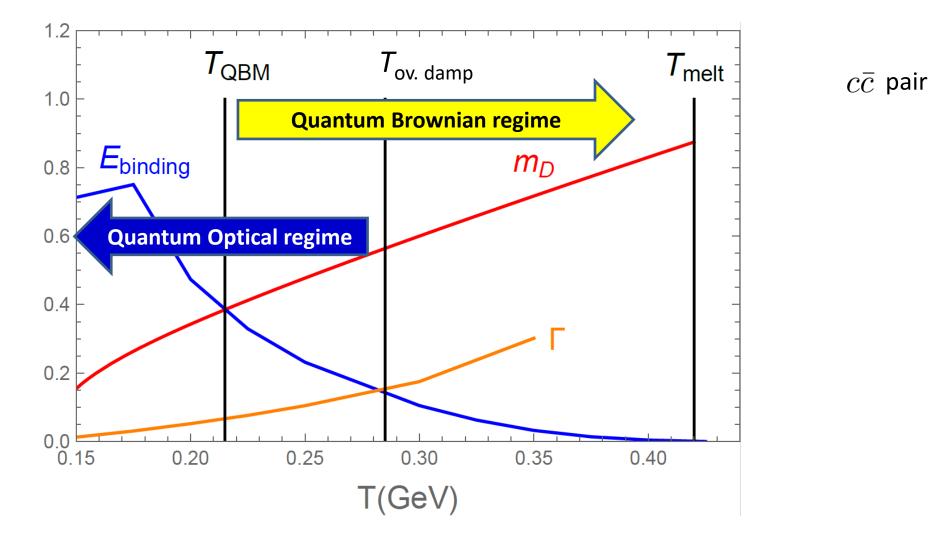
At "small" T
$$\left(T \lesssim \frac{m_Q \alpha_S}{C}\right)$$
: dipole approximation : $\Gamma = \tau_R^{-1} \approx \frac{C^2 T^3}{\alpha_s m_Q^2}$
 $\left(\frac{\tau_R}{\tau_E} = \frac{\alpha_s m_Q^2}{CT^2} \gg 1\right)$ And $\frac{\tau_R}{\tau_S} = \frac{\alpha_s^3 m_Q^3}{C^2 T^3} \gg 1$ for $T \lesssim m_Q \frac{\alpha_S}{C^{2/3}}$

Fine with the Markovian assumption

QCD time scales



Two types of dynamical modelling



Numbers extracted from a specific potential model : Katz et al, Phys. Rev. D 101, 056010 (2020)

Recent OQS implementations (single $Q\bar{Q}$ pair)

I	regime	SU3 ?	Dissipation ?	3D / 1D	Num method	year	remark	ref	(Yea
ſ	NRQCD 🗇 QBM	No	No	1D	Stoch potential	2018		Kajimotoet al. , Phys. Rev. D 97, 014003 (2018), 1705.03365	No
		Yes	No	3D	Stoch potential	2020	Small dipole	R. Sharma et al Phys. Rev. D 101, 074004 (2020), 1912.07036	Se
		Yes	No	3D	Stoch potential	2021		Y. Akamatsu, M. Asakawa, S. Kajimoto (2021), 2108.06921	21
		No	Yes	1D	Quantum state diffusion	2020		T. Miura, Y. Akamatsu et al, Phys. Rev. D 101, 034011 (2020), 1908.06293	An
		Yes	Yes	1D	Quantum state diffusion	2021		Akamatsu & Miura, EPJ Web Conf. 258 (2022) 01006, 2111.15402	An
		No	Yes	1D	Direct resolution	2021		O. Ålund, Y. Akamatsu et al, Comput. Phys. 425, 109917 (2021), 2004.04406	60
		Yes 🗸	Yes 🗸	1D	Direct resolution	2022		S Delorme et al, https://inspirehep.net /literature/ 2026925	
	pNRQCD (i)	Yes	No	1D+	Direct resolution	2017	S and P waves	N. Brambilla et al, Phys. Rev. D96, 034021 (2017), 1612.07248	
	(i) Et (ii)	Yes	No	1D+	Direct resolution	2017	S and P waves	N. Brambilla et al, Phys. Rev. D 97, 074009 (2018), 1711.04515	
	(i)	Yes	No	Yes	Quantum jump	2021	See SQM 2021	N. Brambilla et al. , JHEP 05, 136 (2021), 2012.01240 & <i>Phys.Rev.D</i> 104 (2021) 9, 094049, 2107.06222	
	(i)	Yes 🗸	Yes 🗸	Yes 🗸	Quantum jump	2022		N. Brambilla et al. 2205.10289	
	(iii)	Yes	Yes 🗸	Yes	Boltzmann (?)	2019		Yao & Mehen, Phys.Rev.D 99 (2019) 9, 096028, 1811.07027	
	NRQCD & « pNRQCD »	Yes	Yes	1D	Quantum state diffusion	2022		Miura et al. http://arxiv.org/abs/2205.15551v1	
	Other	No	Yes	1D	Stochastic Langevin Eq.	2016	Quadratic W	Katz and Gossiaux	•••

(Year > 2015)

Not exhaustive

See as well table in 2111.15402v1

And recent review : A. Andronic et al, *Eur.Phys.J.A* 60 (2024) 4, 88

Either the one or the other ... nothing in between ?

Starting from the NRQCD Hamiltonian

$$\mathsf{hian} \quad H_{\mathsf{tot}} = \left(\frac{p_Q^2}{2M} + \frac{p_{\bar{Q}}^2}{2M}\right) \otimes I_{\mathsf{QGP}} + I_{Q\bar{Q}} \otimes H_{\mathsf{QGP}} + \int_{\boldsymbol{x}} n_{\boldsymbol{x}}^a \otimes gA_0^a\left(\boldsymbol{x}\right)$$

Lindblad structure $\frac{d\rho(t)}{dt} = -i \left[H_Q + H_{LS}, \rho(t)\right] + \sum \gamma_n \left(L_n \rho(t) L_n^{\dagger} - \frac{1}{2} \left\{L_n^{\dagger} L_n, \rho(t)\right\}\right)$

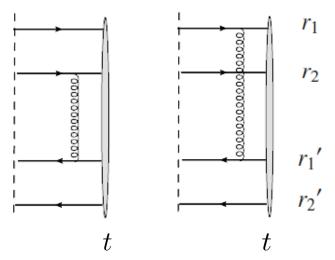
Iterating the Von Neumann equation, tracing out the QGP d.o.f. and assuming a slow evolution of ρ^{I} in the interaction representation (Born - Markov), one arrives at the Redfield equation

$$\frac{d\rho^{I}(t)}{dt} = -\int_{t_{0}}^{t} dt' \int_{xx'} \left[n^{a}(t,x), n^{a}(t',x')\rho^{I}(t) \right] \Delta^{>}(t-t',x-x') + h.c.$$

Where the gluon propagator is

$$\delta^{ab}\Delta^{>}(t_{1}-t_{2},x-x') = g^{2}\left\langle T_{C}\left[A_{0}^{a}(t_{1},x)A_{0}^{b}(t_{2},x')\right]\right\rangle_{0}$$

IMPORTANT : localized on $t_1 - t_2 \lesssim \tau_E$



 $\begin{aligned} \text{Lindblad structure} \quad \frac{d\rho(t)}{dt} &= -i\left[H_Q + H_{LS}, \rho(t)\right] + \sum_n \gamma_n \left[L_n \rho(t) L_n^{\dagger} - \frac{1}{2} \left\{ L_n^{\dagger} L_n, \rho(t) \right\} \right] \\ \text{Jumps -> other states} \\ \text{Sumps -> other states} \\ \delta^{ab} \Delta^>(t_1 - t_2, x - x') &= g^2 \left\langle T_C \left[A_0^a(t_1, x) A_0^b(t_2, x') \right] \right\rangle_0 \end{aligned}$

Jump contribution : $\frac{d\rho^{I}(t)}{dt} = \int_{t_{0}}^{t} dt' \int_{xx'} \Delta^{>}(t-t', x-x') n^{a}(t', x') \rho^{I}(t) n^{a}(t, x) + h.c. + \cdots$

No symetrized form ! => not Linblad structure

$$\rho^{I}(t) - \rho^{I}(t_{0}) = \frac{1}{2} \int_{t_{0}}^{t} dt' \int_{t_{0}}^{+\infty} dt'' \int_{x'x''} \Delta^{>}(t'-t'', x'-x'') n^{a}(t'', x'') \rho^{I}(t) n^{a}(t', x') + h.c. + \cdots$$

$$\uparrow^{t' \text{ and } t'' \text{ still intricated}}$$

Trick :
$$\Delta^{>}(t'-t'',x'-x'') = \int_{-\infty}^{+\infty} dv \int_{y} g(v-t'',y-x'')g(t'-v,x'-y) \qquad \text{g:jump correlators}$$

with $g(t'-v,x'-y)=g^{\star}(v-t',y-x')$

$$\rho^{I}(t) = \underbrace{\frac{1}{2} \int_{y} \int dv}_{\sim \sum_{n} \gamma_{n}} \int_{t_{0}}^{t} dt' \int_{t_{0}}^{+\infty} dt'' \int_{x''} g(v - t'', y - x'') \hat{n}^{a}(t'', x'') \rho^{I}(t) \int_{x'} g^{\star}(v - t', y - x') \hat{n}^{a}(t', x') + \cdots \\ = \underbrace{\frac{1}{2} \int_{y} \int dv}_{\sim \sum_{n} \gamma_{n}} \int_{t_{0}}^{+\infty} dt'' \int_{x''} g(v - t'', y - x'') \hat{n}^{a}(t'', x'') \rho^{I}(t) \underbrace{\int_{t_{0}}^{t} dt' \int_{x'} g^{\star}(v - t', y - x') \hat{n}^{a}(t', x')}_{\equiv L_{n}^{+???}} + h.c. + \cdots$$

EPS-HEP 2025

Not quite ! As time derivation will break this structure !!! Redfield : NOT LINDBLAD

$$\text{Lindblad structure} \quad \frac{d\rho(t)}{dt} = -i \left[H_Q + H_{LS}, \rho(t)\right] + \sum_n \gamma_n \left(L_n \rho(t) L_n^{\dagger} - \frac{1}{2} \left\{L_n^{\dagger} L_n, \rho(t)\right\}\right)$$

$$\rho^I(t) = \frac{1}{2} \int_y \int_{-\infty}^{+\infty} dv \int_{t_0}^t dt' \int_{t_0}^{+\infty} dt'' \int_{x''} g(v - t'', y - x'') \hat{n}^a(t'', x'') \rho^I(t) \int_{x'} g^*(v - t', y - x') \hat{n}^a(t', x') + \cdots$$

How to proceed without introducing further approximations (than $\tau_{E} \ll \tau_{R} \approx t-t_{0}$)? In fact, there is an {} of equivalent QME

<u>Nathan and Rudner (2020)</u>: In significant contributions to the integrals stem from regions where the 3 times v, t' and t'' are separated by $\tau_{\rm E}$ at most => one can **permutate the boundaries on v and t'** (at the price of a small correction in $\tau_{\rm E} / \tau_{\rm R}$)

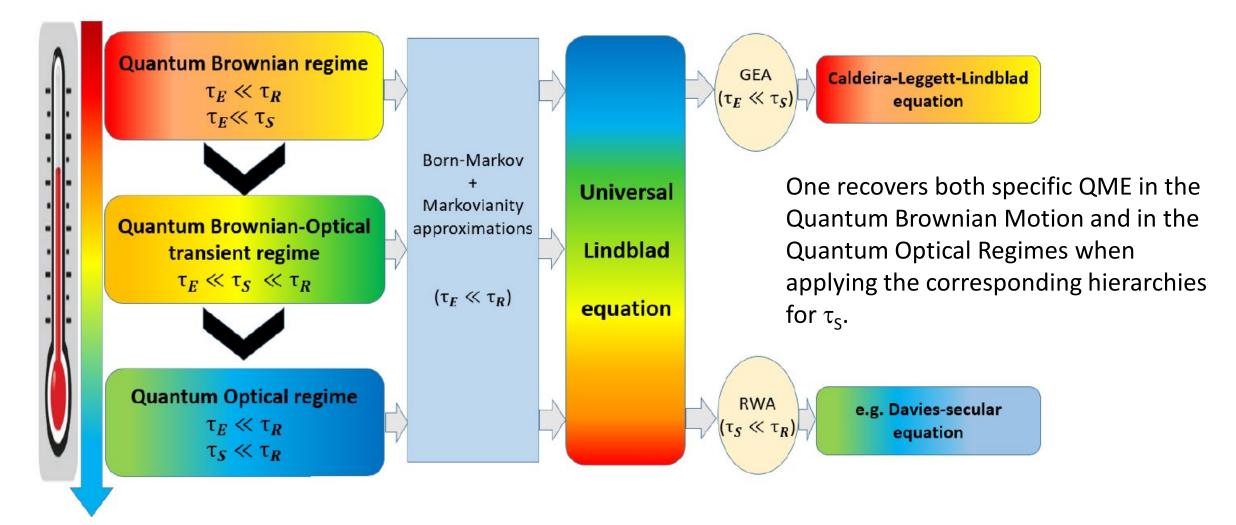
$$\rho^{I}(t) = \frac{1}{2} \int_{y} \int_{t_{0}}^{t} dv \int_{-\infty}^{+\infty} dt' \int_{t_{0}}^{+\infty} dt'' \int_{x''} g(v - t'', y - x'') \hat{n}^{a}(t'', x'') \rho^{I}(t) \int_{x'} g^{\star}(v - t', y - x') \hat{n}^{a}(t', x') + \cdots$$

Then proceeding with time derivative:

EPS-HEP 2025

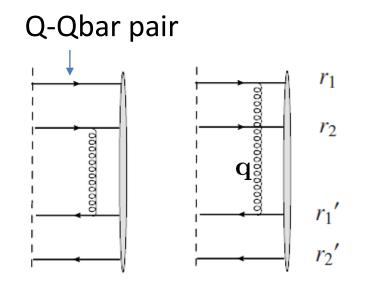
Same structure in the Schroedinger representation 22

Schematic applicability of the ULE :



QGP Temperature

A coupled singlet-octet universal Lindblad equations



Scattering from gluons change the color representation : o <-> s

$$\mathcal{D}_Q = \left(egin{array}{c} \mathcal{D}_s \ \mathcal{D}_o \end{array}
ight)$$

- One assumes some binding Poschl-Teller potential in the singlet representation => in-QGP Bound states (|n>, |m>,...)
- For the octet representation, no binding potential => diffusion states |k> => « large » energy gap.
- Illustration for the singlet -> octet (center of mass integrated)

$$\tilde{L}_1(\mathbf{k}, n, y) = -i\sqrt{\frac{1}{2N_c}} \int d\mathbf{q} \, e^{i\mathbf{q}\cdot\mathbf{y}} \tilde{g}\left(q^0 = E_n - \frac{k^2}{M}, \mathbf{q}\right) \langle \mathbf{k} | \sin\frac{\mathbf{q}\cdot\mathbf{s}}{2} | n \rangle$$

Fourier transform of g, sqrt of the QGP spectral density

Dipolar transition matrix element

Illustrations of transition rates

- \succ Starting form a singlet state : $\hat{\rho}(0) = |n\rangle\langle n|$
- > The transition rate towards octet state $|\mathbf{k}\rangle$ (\Leftrightarrow differential dissociation rate) is $d\Gamma/d\mathbf{k} = \frac{d}{dt} \langle \mathbf{k} | \hat{\rho}(t) | \mathbf{k} \rangle$
- > With previous expressions :

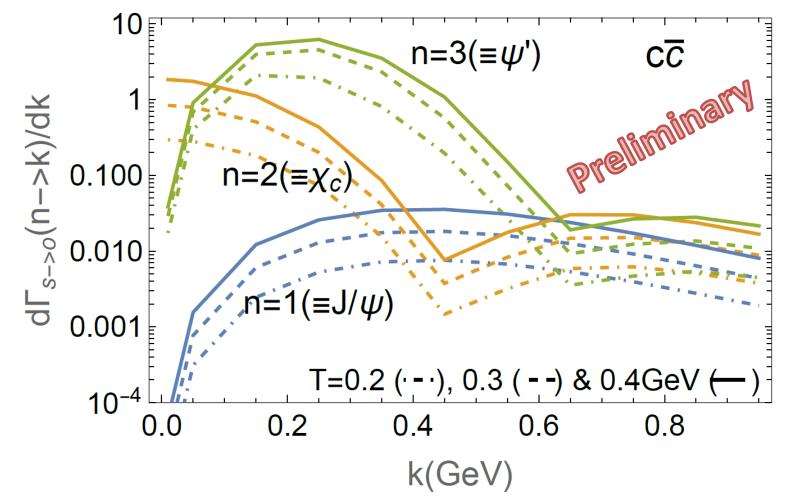
Probability to find the Q-Qbar in an octet state

Result quite similar to the Fermi Golden rule

> But also genuine quantum coherences:
$$\frac{d}{dt}\langle \mathbf{k}'|\hat{\rho}(t)|\mathbf{k}\rangle \neq 0$$

Illustrations of transition rates

$$d\Gamma_{\rm s\to o}(n)/d\mathbf{k} = \frac{N_c^2 - 1}{2N_c} \int d\mathbf{q} \,\tilde{g}^2 \left(q^0 = E_n - \frac{k^2}{M}, \mathbf{q}\right) |\langle \mathbf{k}| \sin \frac{\mathbf{q} \cdot \mathbf{s}}{2} |n\rangle|^2$$

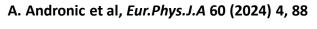


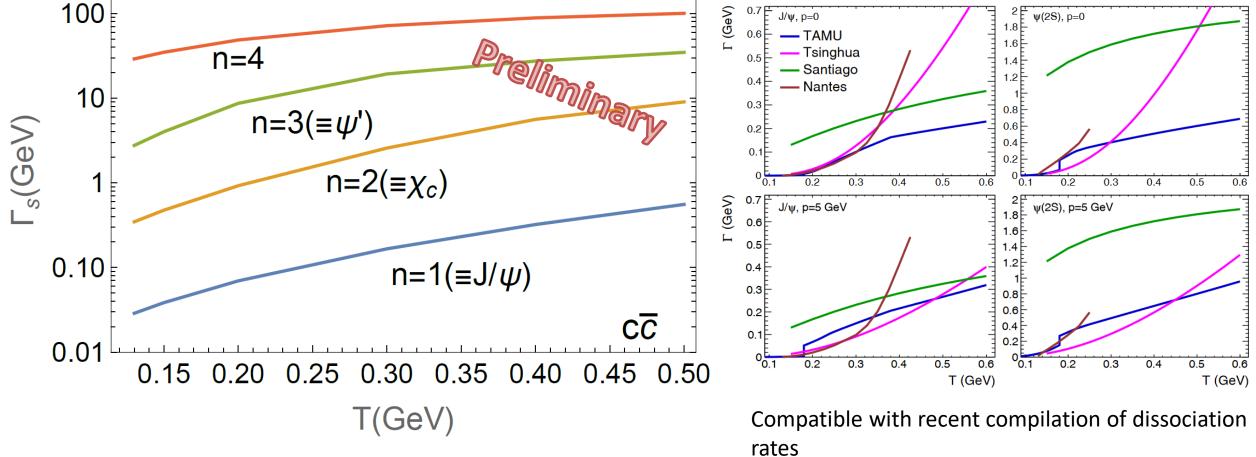
- Hierarchy from ground state -> excited state
- The transition rate towards octet state |k> (differential dissociation rate) is
- For k close to 0 : selection rule for even bound states

$$\langle \mathbf{k} = 0 | \sin \frac{\mathbf{q} \cdot \mathbf{s}}{2} | n_{\text{even}} \rangle = 0$$

Illustrations of transition rates

Total transition rate : $\Gamma_{s\to o}(n) = \int d\mathbf{k} d\Gamma_{s\to o}(n)/d\mathbf{k}$





Illustrations of spectral densities for charmonia

Lindblad equation:
$$\frac{d\rho(t)}{dt} = -i\left[H_Q + H_{LS}, \rho(t)\right] + \sum_n \gamma_n \left(L_n\rho(t)L_n^{\dagger} - \frac{1}{2}\left\{L_n^{\dagger}L_n, \rho(t)\right\}\right)$$

: Von Neumann equation with

$$H_{ ext{eff}} = H_Q + H_{ ext{LS}} - i \sum_n rac{\gamma_n}{2} L_n^\dagger L_n$$
Non Hermitic

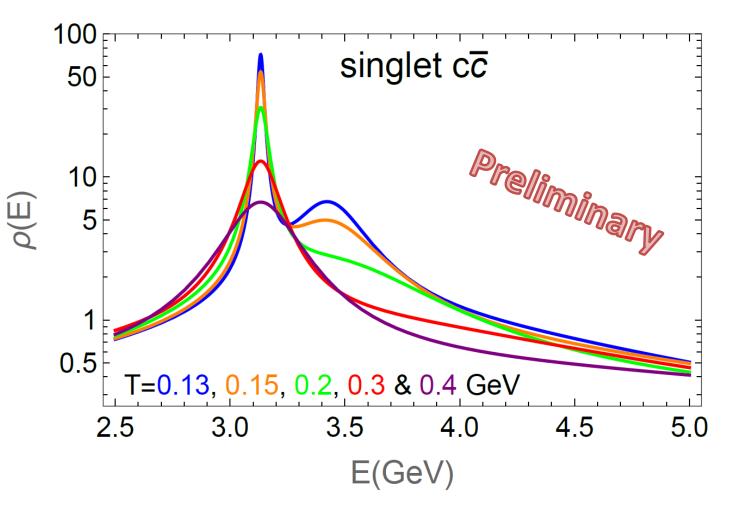
Definition of the spectral density :

$$\rho(E) = \frac{1}{\pi} \Im \operatorname{tr} \frac{1}{E - H_{\text{eff}} - i\epsilon}$$

At T=0, a sum of Dirac peaks

Main result: fast melting of the χ_c state, progressive melting of the J/ ψ state beyond Tc...

... correct interpolation between the Quantum Optical regime at low T and the Quantum Brownian Motion regime at high T EPS-HEP 2025



Conclusions

Goal: Describe the entire time evolution of in-QGP quarkonia...

...through a general Lindblad equation, encompassing both the high and low T regimes.

- The proper QME was identified
- First numerical applications show the « interpolating » features of such Universal Lindblad equation
- Further numerical studies of dynamical evolution on the way...
- > Future work : establishing a semiclassical equation and checking its validity... see as well :
 - 1. arXiv:2506.19194 [pdf, ps, other] hep-ph hep-th quant-ph

Quantum vs. semiclassical description of in-QGP quarkonia in the quantum Brownian regime

Authors: Aoumeur Daddi-Hammou, Stéphane Delorme, Jean-Paul Blaizot, Pol Bernard Gossiaux, Thierry Gousset

Abstract: In this work, we explore the range of validity of the semiclassical approximation of a quantum master equation designed to describe the c\bar{c} dynamics in a quark gluon plasma at various temperatures, in the quantum Brownian regime. We perform a comparative study of various properties, e.g. the charmonia yield, of the Wigner density obtained with the Lindblad equation and with the associated s... \bigtriangledown More Submitted 23 June, 2025; originally announced June 2025.

Manuscript coming soon

Back up

The master equations of the two regimes

Having $H_{int} = \sum_i A^{(i)} \otimes B^{(i)}$, the quantum Brownian regime is described by the Caldeira-Leggett-Lindblad equation

$$\frac{\mathrm{d}\hat{\rho}_{Q\bar{Q}}\left(t\right)}{\mathrm{d}t} = -i\left[\hat{H}_{Q\bar{Q}} + \hat{H}_{\mathrm{LS}}, \hat{\rho}_{Q\bar{Q}}\left(t\right)\right] + \sum_{i,j}\gamma_{ij}(0)\left(\bar{A}^{(j)}\hat{\rho}_{Q\bar{Q}}\left(t\right)\bar{A}^{(i)\dagger}\right) - \frac{1}{2}\left\{\bar{A}^{(i)\dagger}\bar{A}^{(j)}, \hat{\rho}_{Q\bar{Q}}\left(t\right)\right\}\right),$$
(7)

with

$$\bar{A}^{(i)} \equiv \hat{A}^{(i)} + \frac{i}{4T} \dot{\hat{A}}^{(i)}, \ \dot{\hat{A}}^{(i)} \equiv i \left[\tilde{H}_{Q\bar{Q}}, \hat{A}^{(i)} \right].$$
(8)

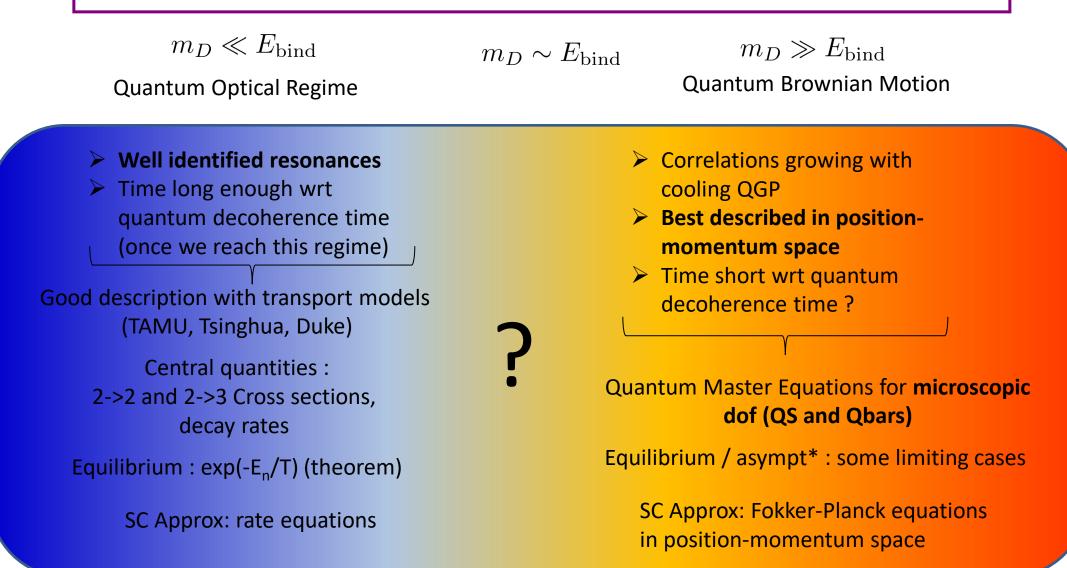
The quantum optical regime is described e.g. by The Davies secular equation

$$\begin{aligned} \frac{\mathrm{d}\hat{\rho}_{Q\bar{Q}}\left(t\right)}{\mathrm{d}t} &= -i\left[\hat{H}_{Q\bar{Q}} + \hat{H}_{\mathrm{LS}}, \hat{\rho}_{Q\bar{Q}}\left(t\right)\right] + \sum_{\omega} \sum_{i,j} \gamma_{ij}\left(\omega\right) \left(\hat{A}^{(j)}\left(\omega\right) \hat{\rho}_{Q\bar{Q}}\left(t\right) \hat{A}^{(i)\dagger}\left(\omega\right) \\ &- \frac{1}{2}\left\{\hat{A}^{(i)\dagger}\left(\omega\right) \hat{A}^{(j)}\left(\omega\right), \hat{\rho}_{Q\bar{Q}}\left(t\right)\right\}\right),\end{aligned}$$

EPS-HEP 202

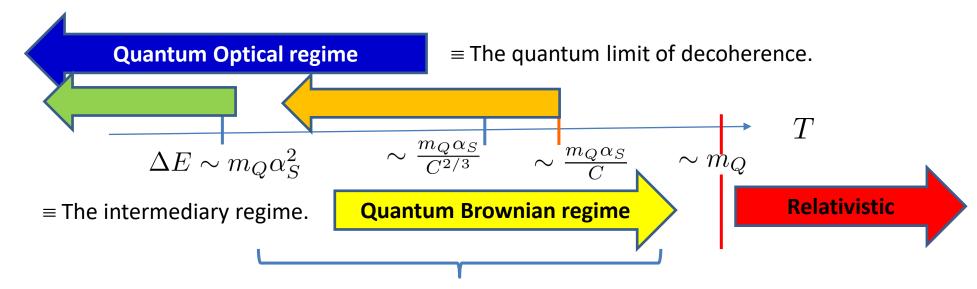
(9)

Two types of dynamical modelling

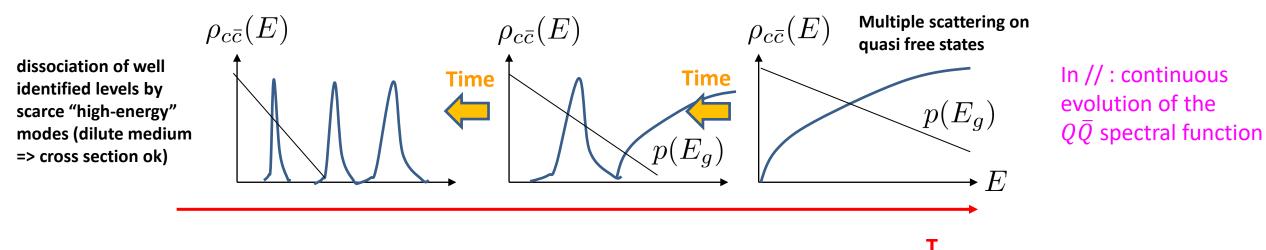


* Since one is facing both dissociation and recombination, obtaining a correct equilibrium limit of these models is an important prerequisite !!!

QCD Temperature scales

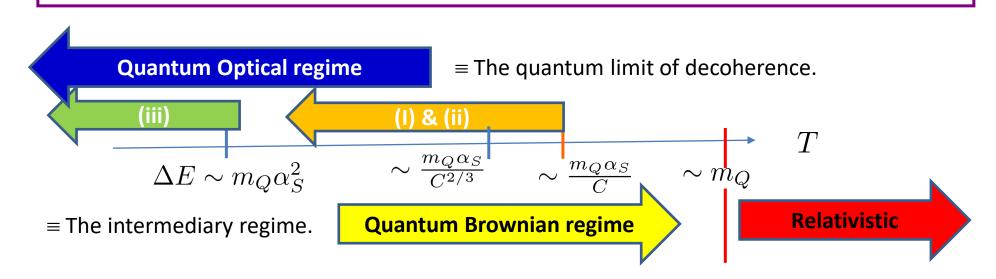


For these « large » temperatures, the Q-Qbar gain enough energy to overwhelm the real binding potential => larger distance => larger decoherence



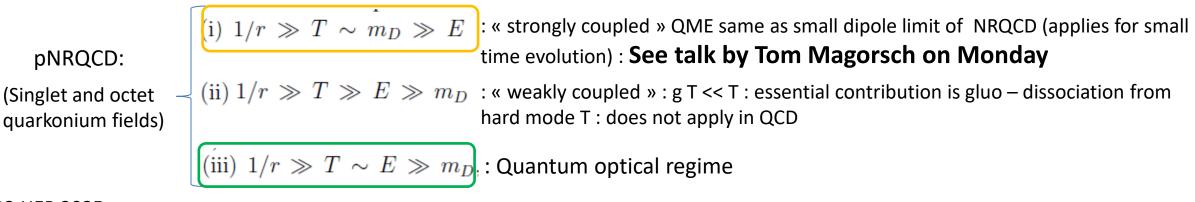
33

QCD Temperature scales



Refined subregimes when playing with the scales of NRQCD / pNRQCD (series of recent papers by N. Brambilla, M.A. Escobdo, A. Vairo, M Strickland et al, Yao, Müller and Mehen,...)

NRQCD: Mv, $\Lambda_{\rm QCD}$, $T \ll \mu_{\rm NR} \ll M$: most general scheme for markovian OQS !



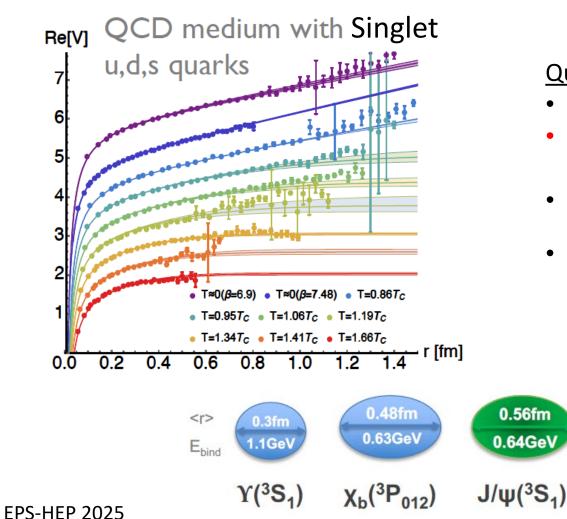
N.B. : Friction is NOT of the Linbladian form => the evolution breaks positivity.

Positivity and Linblad form can be restored at the price of extra subleading terms :

$$\left\{\left(n_{\mathbf{X}}^{a}-\underbrace{\frac{i}{4T}\dot{n}_{\mathbf{X}}^{a}}_{\mathbf{X}}\right)\left(n_{\mathbf{X}'}^{a}+\underbrace{\frac{i}{4T}\dot{n}_{\mathbf{X}'}^{a}}_{\mathbf{X}'}\right),\mathcal{D}_{Q\bar{Q}}\right\}-2\left(n_{\mathbf{X}}^{a}+\underbrace{\frac{i}{4T}\dot{n}_{\mathbf{X}}^{a}}_{\mathbf{X}'}\right)\mathcal{D}_{Q\bar{Q}}\left(n_{\mathbf{X}'}^{a}-\underbrace{\frac{i}{4T}\dot{n}_{\mathbf{X}'}^{a}}_{\mathcal{L}_{4}}\right)$$

EPS-HEP 2025 Application to QED-like and QCD for both cases of 1 body and 2 body densities...

Protential (recent IQCD calculations)



At T=0, well described by the Cornell shape:

$$V(r) = -\frac{\alpha}{r} + Kr$$

<u>Quarkonia scales</u>

- mo
- In vacuum: Binding energy / separation energy btwn levels: $\Delta E \alpha m_Q g^4$ (Coulomb part) => v αg^2

0.59fm

0.54GeV

 $\Upsilon({}^{3}S_{1(n=2)})$

• For a linear potential $\hbar\omega_0 = \left(\frac{\hbar^2 K_l^2}{m_b/2}\right)^{\frac{1}{3}} \approx 0.504 \text{ GeV}$

0.86fm

0.2GeV

 $\Upsilon({}^{3}S_{1(n=3)})$

$$\bigvee v \propto \left(\frac{K_l}{m_h^2}\right)^{\frac{1}{3}}$$

v_c≈0.3

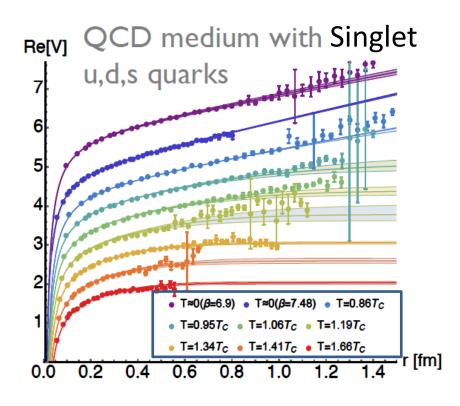
v_b≈0.1

1.2fm

0.06GeV

 $\Psi'({}^{3}S_{1(n=2)})$

Protential (recent IQCD calculations)



At T=0, well described by the Cornell shape:

$$V(r) = -\frac{\alpha}{r} + Kr$$

<u>Quarkonia scales</u>

- mo
- In vacuum: Binding energy / separation energy btwn levels: $\Delta E \alpha m_0 g^4$ (Coulomb part) => v αg^2
- levels: $\Delta \mathbf{E} \alpha \prod_{\mathbf{Q}, \mathbf{b}} \mathbf{A}$ Radius : $(\mathbf{m}_{\mathbf{Q}} \mathbf{g}^{\mathbf{A}} \mathbf{2})^{-1}$ For a linear potental $\hbar \omega_0 = \left(\frac{\hbar^2 K_l^2}{m_b/2}\right)^{\frac{1}{3}} \approx 0.504 \text{ GeV}$ $\mathbf{V} \propto \left(\frac{K_l}{m_b^2}\right)^{\frac{1}{3}}$

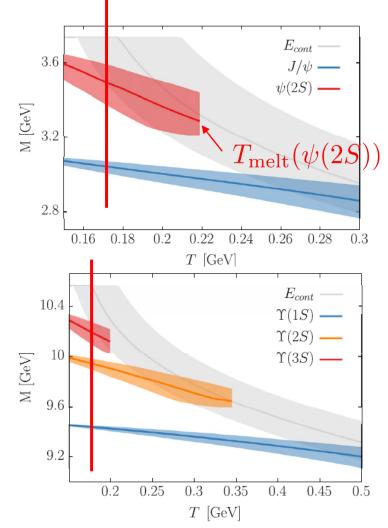
Compact and tightly bound states (at least for the lowest ones) => could survive QGP at low/mid T as well as to interactions with hadronic matter.

Recent In-medium spectrum (Lafferty and Rothkopf 2020)

χ_b'(2P)

 $\chi_c(1P)$

Y"(35) Ψ(25)



« all or nothing scenario»:

- If T_{early QGP} > T_{melt} => the state is not produced
- If T_{early QGP} < T_{melt} => the state is produced like in pp

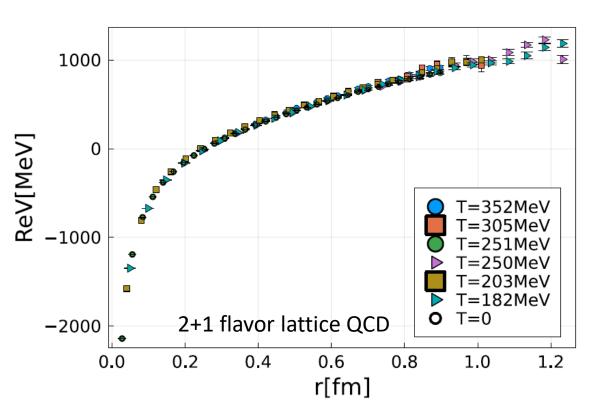
=> SEQUENTIAL SUPPRESSION; Quarkonia as early QGP thermometer

Y(15) Most prominently : probing new state of matter in AA collision: Original idea by
 J/ψ(15) Matsui and Satz (86)...

... and advertized as a motivation in hundreds of talks (and papers) since then

EPS-HEP 2025 David Lafferty, Alexander Rothkopf , Phys. Rev. D 101, 056010 (2020)

Recent news : the real potential is not screened at temperatures reached in AA collisions !!!



How to define properly a "potential" on the lattice ?

<u>Historically</u> : thermodynamical potential like the free energy (in presence of a static dipole) or the total internal energy.

Modern approach : evaluate the Wilson loop and connect it to the r-dependent spectral density

$$W(\tau, r, T) = \int_{-\infty}^{+\infty} d\omega e^{-\omega\tau} \rho_r(\omega, T)$$

A "peak" contribution in the spectral density modelled as

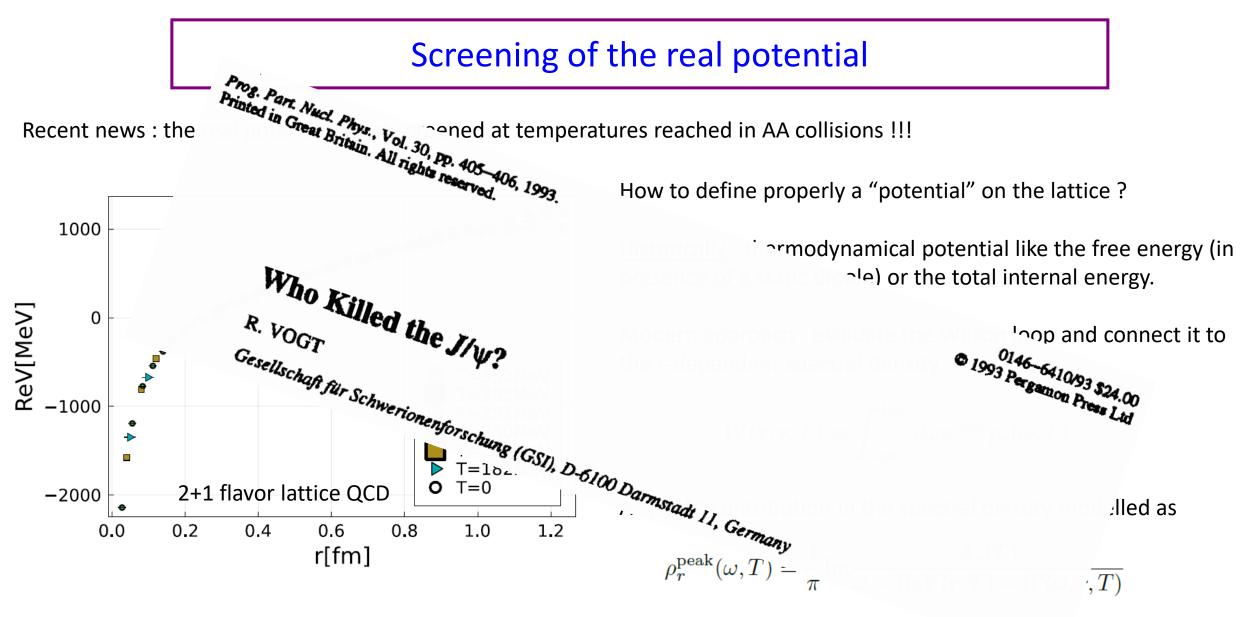
$$\rho_r^{\rm peak}(\omega,T) = \frac{1}{\pi} {\rm Im} \frac{A_r(T)}{\omega - {\rm Re} V(r,T) - i \Gamma(\omega,r,T)}$$

=> Lattice data then unfolded with this Ansatz.

Bazazov et al 2023 (Hot QCD collaboration)

EPS-HEP 2025

Does not seems quite intuitive, may not be the end of the story



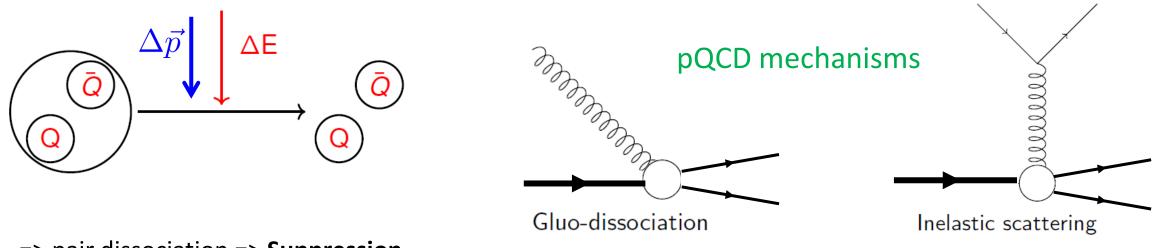
Bazazov et al 2023 (Hot QCD collaboration)

EPS-HEP 2025

Does not seems quite intuitive, may not be the end of the story

Collisions with the QGP

- Besides arguments based on the Debye mass / screening, it was pointed out already in the 90's that interactions with partons in the QGP could lead to dissociation of bound states (whose spectral function thus acquire some width Γ corresponding to the dissociation rate)
- Energy-momentum exchange with the QGP (gluo-dissociation, q quarkonia quasi elastic scattering)

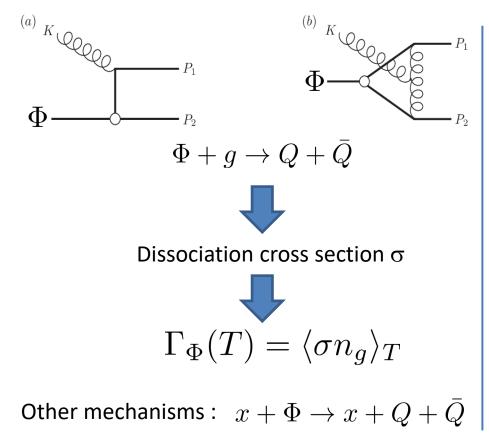


- => pair dissociation => Suppression
- ⇔ loss of probability of the quarkonia ... Often described by some imaginary potential W in modern approaches

A central quantity: the decay rate Γ

Many approaches

pQCD view (Bhanot & Peskin), later on consolidated by NRQCD (Brambilla & Vairo)



=>

QFT/Lattice QCD

Time correlator

 $\mathcal{C}_{>}(t,\vec{r}) \approx \langle \psi(t,\frac{\vec{r}}{2})\bar{\psi}(t,-\frac{\vec{r}}{2})\psi(0,0)\bar{\psi}(0,0)\rangle$

Satisfies Schroedinger equation with complex potential V+iW . Breakthrough by Laine et al. (2006)

 $\Gamma_{\Phi}(T) = -2\langle \Phi | W | \Phi \rangle$

Concept better suited at it genuinely encodes the "in medium" propagation

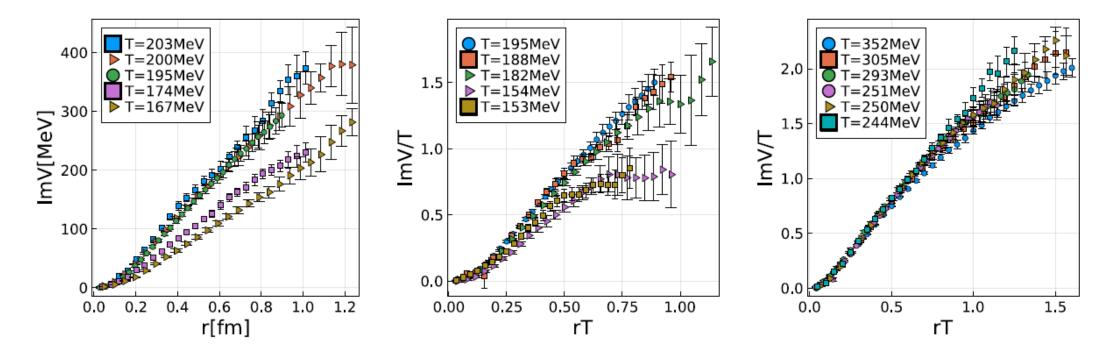
Simple decay law : Prob survival =
$$\exp\left(-\int_{t_0}^{t_{\text{fin}}} \Gamma(T(t))dt\right)$$

A central quantity: the decay rate Γ

Recent IQCD calculations of W(r) = Im(V(r)) (at ω =0)

$$\rho_r^{\text{peak}}(\omega, T) = \frac{1}{\pi} \text{Im} \frac{A_r(T)}{\omega - \text{Re}V(r, T) - i\Gamma(\omega, r, T)}$$

Bazazov et al 2023 (Hot QCD collaboration)

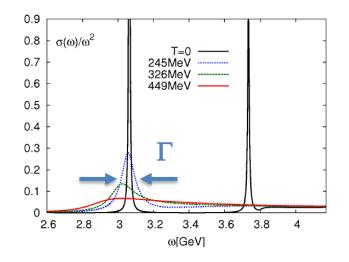


Nice r T scaling

Dipole structure at small r, no saturation seen at "large" r

Quarkonia at finite T

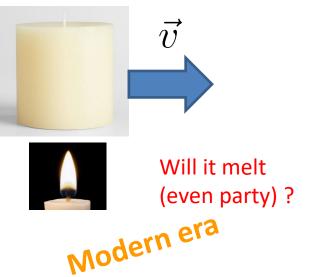
- Pheno: Yet, these pictures might still be compatible with the notion of sequential « suppression »...
- However, this notion has to be made more precise : (LQCD) spectral function IQCD



$$\rho(\omega, p, T) = \frac{1}{2\pi} \operatorname{Im} \int_{-\infty}^{\infty} dt e^{i\omega t} \int d^3 x e^{ipx} \langle [J(x, t), J(0, 0)] \rangle_T$$

At T=245 MeV, ψ' has disappeared but J/ ψ still surviving for $\approx 1/\Gamma \approx a$ couple of fm/c ... which needs to be compared with the local QGP cooling time τ_{cool} : $\Gamma \times \tau_{cool} > 1 \Leftrightarrow$ suppressed

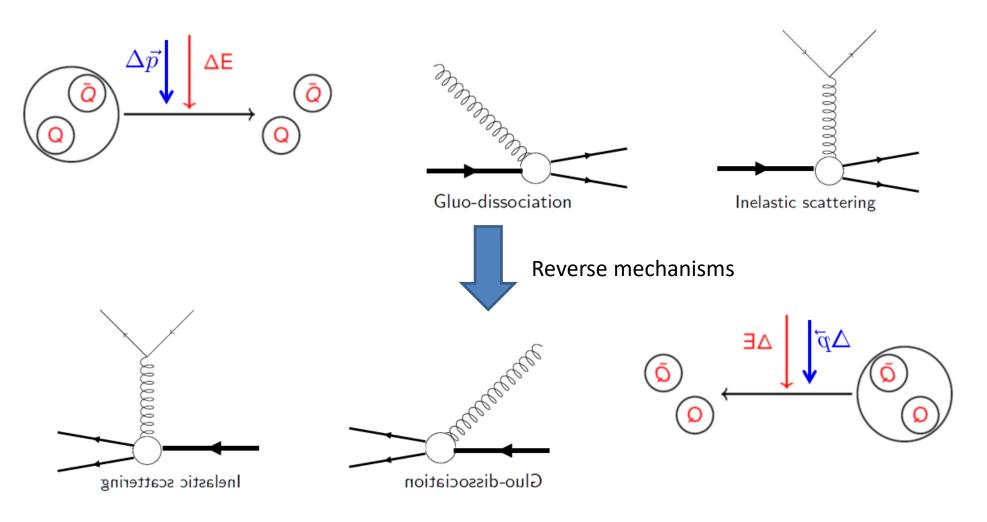
- N.B.: The opposite phenomenom might also be relevant: some state above the « melting » temperature can survive (for a short while < 1/Γ) before getting lost definitively.
- Key question : do the quarkonia states (chemically) equilibrate with the QGP ?
 EPS-HEP 2025



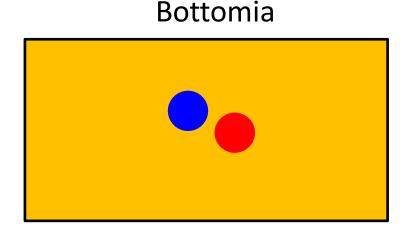
44

Regeneration

Detailed balance :

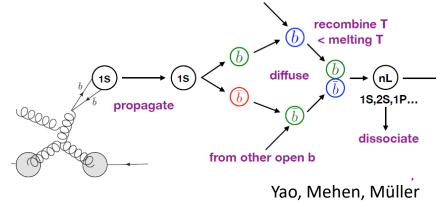


Regeneration: Dilute vs Dense



No exogenous recombination : only the b-bbar pairs which are initially close together will emerge as bottomia states

In some SC formalisms : intermediate regeneration



EPS-HEP 2025

Exogenous recombination : c & cbar initially far from each other may recombine and emerge as charmonia states

No full quantum treatment possible => need semiclassical approximation(s)

Key question : when does the recombination (dominantly) happen ? Crucial role of the binding force.

One extreme viewpoint : regeneration happens at the end of the QGP (Statistical Hadronization Model)

Charmonia