

EPS-HEP 2025 6 – 11 July 2025, Marseille

Searching for heavy resonances via oblique parameters in non-linear effective frameworks

Ignasi Rosell Universidad CEU Cardenal Herrera València (Spain) In collaboration with: A. Pich (IFIC, UV-CSIC, València, Spain) J.J. Sanz-Cillero (UCM, Madrid, Spain)

<u>Sent to PRD [arXiv: 2503.05917]</u> JHEP 01 (**2014**) 157 [arXiv: 1310.3121] PRL 110 (**2013**) 181801 [arXiv: 1212.6769]

OUTLINE

- 1) Motivation
- 2) The effective resonance Lagrangian
- 3) Oblique Electroweak Observables: S and T at NLO
- 4) Phenomenology
- 5) Conclusions

OUTLINE

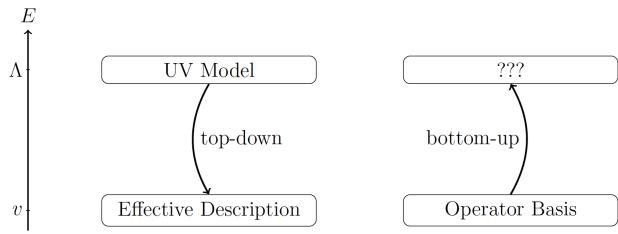
- 1) Motivation
- 2) The effective resonance Lagrangian
- Botton Botton approach Oblique Electroweak Observables: S and 3) at NLO
- Phenomenology 4)
- 5) Conclusions

1. Motivation

- The Standard Model (SM) provides an extremely succesful description of the electroweak and strong interactions.
- A key feature is the particular mechanism adopted to break the electroweak gauge symmetry to the electroweak subgroup, SU(2)_L x U(1)_Y → U(1)_{QED}, so that the W and Z bosons become massive. The LHC discovered a new particle around 125 GeV*.
- Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore, we can use EFTs because it seems there is a large mass gap.

1. Motivation

- The Standard Model (SM) provides an extremely succesful description of the electroweak and strong interactions.
- A key feature is the particular mechanism adopted to break the electroweak gauge symmetry to the electroweak subgroup, SU(2)_L x U(1)_Y → U(1)_{QED}, so that the W and Z bosons become massive. The LHC discovered a new particle around 125 GeV*.
- Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore, we can use EFTs because it seems there is a large mass gap.



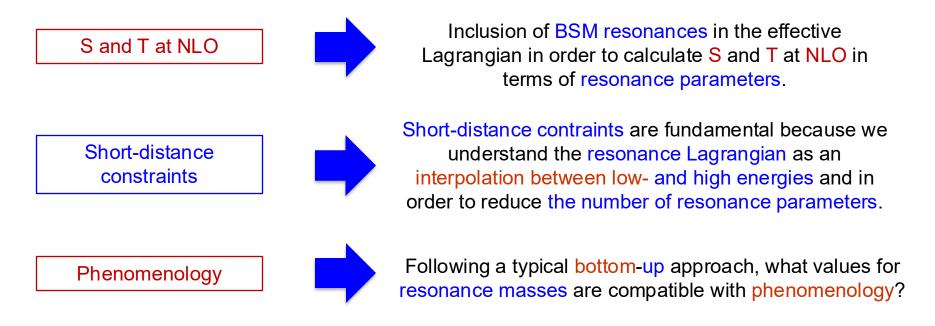
* <u>CMS</u> and <u>ATLAS</u> Collaborations.

Diagram by C. Krause [PhD thesis, 2016]

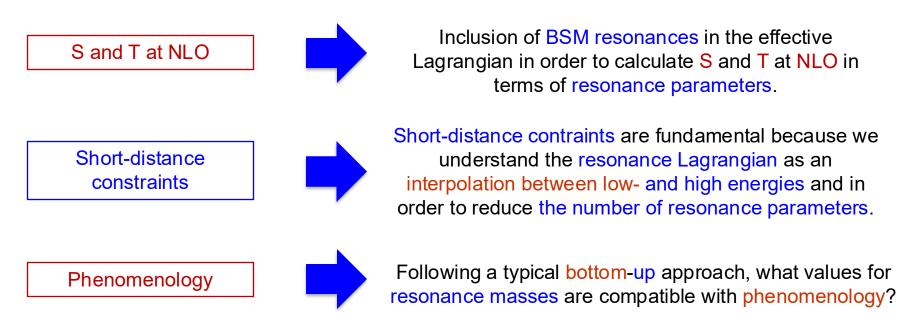
- Depending on the nature of the EWSB we have two possibilities for these EFTs (or something in between):
 - The decoupling (linear) EFT: SMEFT
 - SM-Higgs (forming a doublet with the EW Goldstones, as in the SM)
 - Weakly coupled
 - LO: SM
 - Expansion in canonical dimensions
 - The more general non-decoupling (non-linear) EFT: EWET, HEFT, EWChL
 - Non-SM Higgs (being a scalar singlet)
 - Strongly coupled
 - LO: Higgsless SM + scalar h + 3 GB (chiral Lagrangian)
 - Expansion in loops or chiral dimensions
 - Some composite Higgs models can be described within the EWET.

- Depending on the nature of the EWSB we have two possibilities for these EFTs (or something in between):
 - The decoupling (linear) EFT: SMEFT
 - SM-Higgs (forming a doublet with the EW Goldstones, as in the SM)
 - Weakly coupled
 - LO: SM
 - Expansion in canonical dimensions
 - The more general non-decoupling (non-linear) EFT: EWET, HEFT, EWChL
 - Non-SM Higgs (being a scalar singlet)
 - Strongly coupled
 - LO: Higgsless SM + scalar h + 3 GB (chiral Lagrangian)
 - Expansion in loops or chiral dimensions
 - Some composite Higgs models can be described within the EWET.

What do we want to do?



What do we want to do?



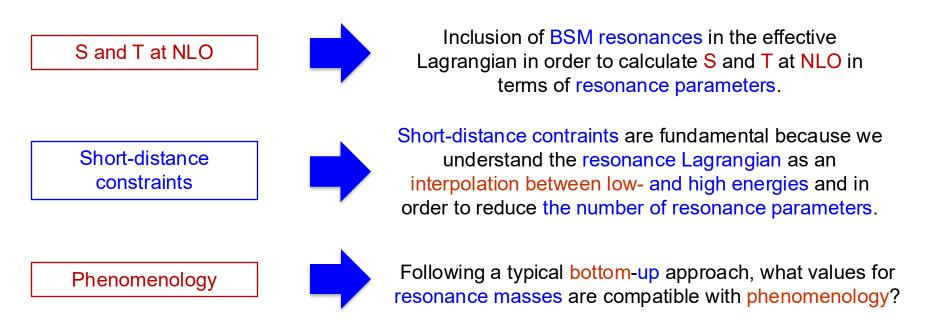
Similarities to Chiral Symmetry Breaking in QCD

i) Custodial symmetry: The Lagrangian is approximately invariant under global SU(2)_L x SU(2)_R transformations. Electroweak Symmetry Breaking (EWSB) turns to be $SU(2)_L x SU(2)_R \rightarrow SU(2)_{L+R}$.

ii) Similar to the Chiral Symmetry Breaking (ChSB) occurring in QCD, *i.e.*, similar to the "pion" Lagrangian of Chiral Perturbation Theory (ChPT)*[^], by replacing f_{π} by v=1/ $\sqrt{(2G_F)}$ =246 GeV. Rescaling naïvely we expect resonances at the TeV scale.

* <u>Weinberg '79</u> * Gasser and Leutwyler <u>'84</u> <u>'85</u> * Bijnens et al. <u>'99</u> <u>'00</u>	** <u>Ecker et al. '89</u> ** <u>Cirigliano et al. '06</u>	^ <u>Dobado, Espriu and Herrero '91</u> ^ <u>Espriu and Herrero '92</u> ^ <u>Herrero and Ruiz-Morales '94</u>
---	---	---

What do we want to do?



Similarities to Chiral Symmetry Breaking in QCD

$QCD(q_a, G_{\mu u})$	Fundamental EW Theory (??)
\uparrow	\updownarrow
Resonance Chiral Theory	Resonance EW Theory
(σ, ρ, \ldots)	(M_V, M_A, \ldots)
\uparrow	\uparrow
Chiral Perturbation Theory	EW Effective Theory
(f_{π}, π_i)	(v, ϕ_i)

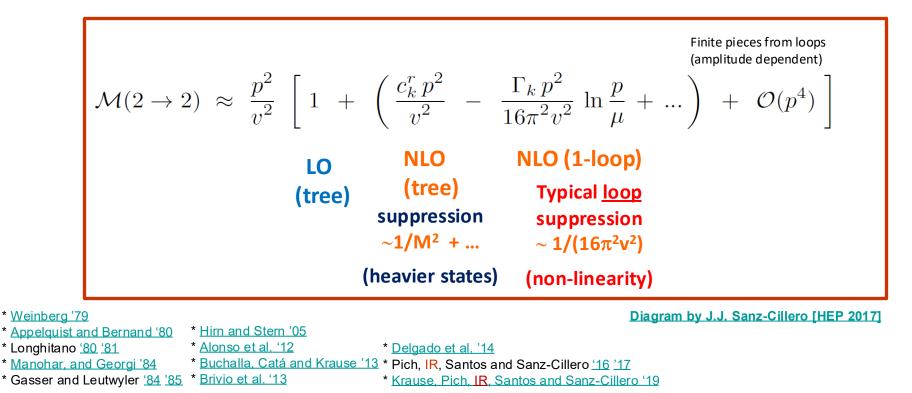
Diagram by J. Santos [VIII CPAN days, 2016]

2. The effective resonance Lagrangian

- ✓ Custodial symmetry
- ✓ Degrees of freedom: bosons χ (EW goldstones, gauge bosons, h) + fermions ψ + BSM resonances (V,A).
- ✓ Chiral power counting*

$$rac{\chi}{v} \sim \mathcal{O}\left(p^0
ight) = rac{\psi}{v} \sim \mathcal{O}\left(p
ight) = \partial_\mu, \, m \sim \mathcal{O}(p) = \mathcal{T} \sim \mathcal{O}(p) = g, \, g' \sim \mathcal{O}(p)$$

✓ Inclusion of fermions and odd-parity operators, not considered in our previous works <u>'13</u> <u>'14</u>.



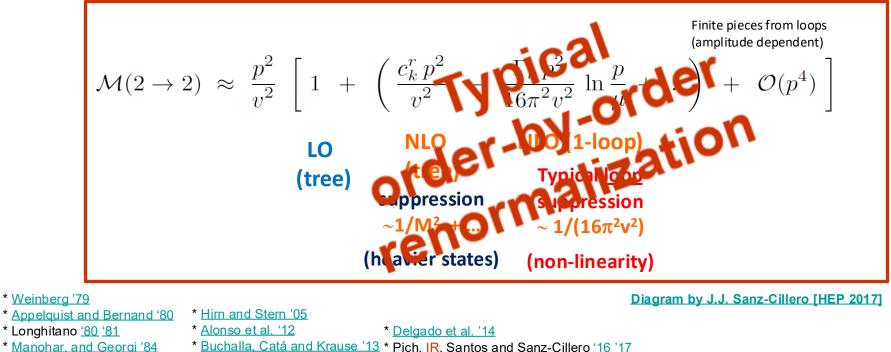
Searching for heavy resonances via oblique parameters in non-linear effective frameworks, I. Rosell

2. The effective resonance Lagrangian

- Custodial symmetry \checkmark
- Degrees of freedom: bosons χ (EW goldstones, gauge bosons, h) + fermions ψ + BSM \checkmark resonances (V,A).
- Chiral power counting* \checkmark

$$rac{\chi}{v} \sim \mathcal{O}\left(p^0
ight) = rac{\psi}{v} \sim \mathcal{O}\left(p
ight) = \partial_\mu, \, m \sim \mathcal{O}(p) = \mathcal{T} \sim \mathcal{O}(p) = g, \, g' \sim \mathcal{O}(p)$$

Inclusion of fermions and odd-parity operators, not considered in our previous works '13'14. \checkmark



- * Buchalla, Catá and Krause '13 * Pich, IR, Santos and Sanz-Cillero '16 '17
- * Gasser and Leutwyler '84 '85 * Brivio et al. '13

* Krause, Pich, IR, Santos and Sanz-Cillero '19

✓ The Lagrangian reads:

$$\begin{split} \Delta \mathcal{L}_{\mathrm{RT}} &= -\frac{v^2}{4} \left(1 + \frac{2\kappa_W}{v} h \right) \langle u_{\mu} u^{\mu} \rangle_2 \\ &+ \langle V_{3\,\mu\nu}^1 \left(\frac{F_V}{2\sqrt{2}} f_+^{\mu\nu} + \frac{iG_V}{2\sqrt{2}} [u^{\mu}, u^{\nu}] + \frac{\widetilde{F}_V}{2\sqrt{2}} f_-^{\mu\nu} + \frac{\widetilde{\lambda}_1^{hV}}{\sqrt{2}} \left[(\partial^{\mu} h) u^{\nu} - (\partial^{\nu} h) u^{\mu} \right] + C_0^{V_3^1} J_T^{\mu\nu} \right) \rangle_2 \\ &+ \langle A_{3\,\mu\nu}^1 \left(\frac{F_A}{2\sqrt{2}} f_-^{\mu\nu} + \frac{\lambda_1^{hA}}{\sqrt{2}} \left[(\partial^{\mu} h) u^{\nu} - (\partial^{\nu} h) u^{\mu} \right] + \frac{\widetilde{F}_A}{2\sqrt{2}} f_+^{\mu\nu} + \frac{i\widetilde{G}_A}{2\sqrt{2}} [u^{\mu}, u^{\nu}] + \widetilde{C}_0^{A_3^1} J_T^{\mu\nu} \right) \rangle_2 \,. \end{split}$$

The Lagrangian reads:

$$\begin{split} \Delta \mathcal{L}_{\mathrm{RT}} &= -\frac{v^2}{4} \left(1 + \frac{2\kappa_W}{v} h \right) \langle u_{\mu} u^{\mu} \rangle_2 \\ &+ \langle V_{3\,\mu\nu}^1 \left(\frac{F_V}{2\sqrt{2}} f_+^{\mu\nu} + \frac{iG_V}{2\sqrt{2}} [u^{\mu}, u^{\nu}] + \frac{\widetilde{F}_V}{2\sqrt{2}} f_-^{\mu\nu} + \frac{\widetilde{\lambda}_1^{hV}}{\sqrt{2}} \left[(\partial^{\mu} h) u^{\nu} - (\partial^{\nu} h) u^{\mu} \right] + C_0^{V_3^1} J_T^{\mu\nu} \right) \rangle_2 \\ &+ \langle A_{3\,\mu\nu}^1 \left(\frac{F_A}{2\sqrt{2}} f_-^{\mu\nu} + \frac{\lambda_1^{hA}}{\sqrt{2}} \left[(\partial^{\mu} h) u^{\nu} - (\partial^{\nu} h) u^{\mu} \right] + \frac{\widetilde{F}_A}{2\sqrt{2}} f_+^{\mu\nu} + \frac{i\widetilde{G}_A}{2\sqrt{2}} [u^{\mu}, u^{\nu}] + \widetilde{C}_0^{A_3^1} J_T^{\mu\nu} \right) \rangle_2 \,. \end{split}$$

- Including resonance masses, we have 12 resonance parameters. This number can be reduced by using short-distance information, but contrary to QCD, we ignore the underlying theory (BSM).
 - ✓ Vanishing form factors at high energies allow us to determine $(G_V, \tilde{G}_A, \lambda_1^{hA}, \tilde{\lambda}_1^{hV})$ in terms of the remaining parameters:

$$\frac{G_V}{F_A} = -\frac{\widetilde{G}_A}{\widetilde{F}_V} = \frac{\lambda_1^{hA} v}{\kappa_W F_V} = -\frac{\widetilde{\lambda_1^{hV}} v}{\kappa_W \widetilde{F}_A} = \frac{v^2}{F_V F_A - \widetilde{F}_V \widetilde{F}_A}$$

✓ Weinberg sum rules (WSRs) at LO and at NLO.

- ✓ 1st WSR. Vanishing of the 1/s term of $\Pi_{VV}(s) \Pi_{AA}(s)$: $\left(F_V^2 \tilde{F}_V^2\right) \left(F_A^2 \tilde{F}_A^2\right) = v^2$
- ✓ 2nd WSR. Vanishing of the 1/s² term of $\Pi_{VV}(s) \Pi_{AA}(s)$: $\left(F_V^2 \widetilde{F}_V^2\right) M_V^2 \left(F_A^2 \widetilde{F}_A^2\right) M_A^2 = 0$
- ✓ 1st WSR + LHC diboson production imply that contributions from fermionic cuts, terms with $(C_0^{V_3^1}, \tilde{C}_0^{A_3^1})$, are negligible.

3. Oblique Electroweak Observables: S and T at NLO

Universal oblique corrections via the EW boson self-energies (transverse in the Landau gauge)

$$\mathcal{L}_{\rm v.p.} \doteq -\frac{1}{2} W^3_{\mu} \Pi^{\mu\nu}_{33}(q^2) W^3_{\nu} - \frac{1}{2} B_{\mu} \Pi^{\mu\nu}_{00}(q^2) B_{\nu} - W^3_{\mu} \Pi^{\mu\nu}_{30}(q^2) B_{\nu} - W^+_{\mu} \Pi^{\mu\nu}_{WW}(q^2) W^-_{\nu}$$

✓ S parameter*: new physics in the difference between the Z self-energies at $Q^2=M_Z^2$ and $Q^2=0$.

$$e_3 = \frac{g}{g'} \widetilde{\Pi}_{30}(0), \qquad \Pi_{30}(q^2) = q^2 \widetilde{\Pi}_{30}(q^2) + \frac{g^2 \tan \theta_W}{4} v^2, \qquad S = \frac{16\pi}{g^2} \left(e_3 - e_3^{\rm SM} \right).$$

T parameter*: custodial symmetry breaking

$$e_1 = \frac{\Pi_{33}(0) - \Pi_{WW}(0)}{M_W^2} \stackrel{\text{\tiny sm}}{=} \frac{Z^{(+)}}{Z^{(-)}} - 1 \qquad T = \frac{4\pi}{g^{\prime 2} \cos^2 \theta_W} \left(e_1 - e_1^{\rm SM}\right)$$

 We follow the useful dispersive representation introduced by Peskin and Takeuchi* for S and a dispersion relation for T (checked for the lowest cuts):

$$S = \frac{16\pi}{g^2 \tan \theta_W} \int_0^\infty \frac{\mathrm{d}t}{t} \left(\rho_S(t) - \rho_S(t)^{\mathrm{SM}} \right)$$
$$T = \frac{16\pi}{g'^2 \cos^2 \theta_W} \int_0^\infty \frac{\mathrm{d}t}{t^2} \left(\rho_T(t) - \rho_T(t)^{\mathrm{SM}} \right)$$

- ✓ They need to be well-behaved at short-distances to get the convergence of the integral.
- ✓ S and T parameters are defined for a reference value for the SM Higgs mass.
- * <u>Peskin and Takeuchi '92</u>
- ** Barbieri et al. '93

- ✓ We consider only the lightest two-particle absorptive cuts ($\phi\phi$, $h\phi$, $\psi\bar{\psi}$) and in general we take as working assumptions M_A > M_V and $\tilde{F}_{V,A}^2 < F_{V,A}^2$.
- ✓ LO result (T_{LO} =0):

$$\checkmark \quad \text{With 1st and 2nd WSR:} \quad S_{\text{LO}} = \frac{4\pi v^2}{M_V^2} \left(1 + \frac{M_V^2}{M_A^2} \right) \quad \longrightarrow \quad \frac{4\pi v^2}{M_V^2} < S_{\text{LO}} < \frac{8\pi v^2}{M_V^2}$$
$$\checkmark \quad \text{With only the 1st WSR:} \quad S_{\text{LO}} > \frac{4\pi v^2}{M_V^2}$$

NLO result with 1st and 2nd WSR:

$$S_{\rm NLO} = 4\pi v^2 \left(\frac{1}{M_V^{r\,2}} + \frac{1}{M_A^{r\,2}}\right) + \Delta S_{\rm NLO}^{\rm P-even} + \Delta S_{\rm NLO}^{\rm P-odd}$$

$$\Delta S_{\rm NLO}^{\rm P-even} = \frac{1}{12\pi} \left[\left(1 - \kappa_W^2\right) \left(\log\frac{M_V^2}{m_h^2} - \frac{11}{6}\right) + \kappa_W^2 \left(\frac{M_A^2}{M_V^2} - 1\right) \log\frac{M_A^2}{M_V^2} \right]$$

$$\Delta S_{\rm NLO}^{\rm P-odd} = \frac{1}{12\pi} \left(\frac{\widetilde{F}_V^2}{F_V^2} + 2\kappa_W^2 \frac{\widetilde{F}_V \widetilde{F}_A}{F_V F_A} - \kappa_W^2 \frac{\widetilde{F}_A^2}{F_A^2}\right) \left(\frac{M_A^2}{M_V^2} - 1\right) \log\frac{M_A^2}{M_V^2} + \mathcal{O}\left(\frac{\widetilde{F}_{V,A}^4}{F_{V,A}^4}\right)$$

P-even results correspond to Pich, IR and Sanz-Cillero <u>'13</u> <u>'14</u>

$$T_{\rm NLO} = \Delta T_{\rm NLO}^{\rm P-even} + \Delta T_{\rm NLO}^{\rm P-odd}$$

$$\Delta T_{\rm NLO}^{\rm P-even} = \frac{3}{16\pi\cos^2\theta_W} \left[\left(1 - \kappa_W^2\right) \left(1 - \log\frac{M_V^2}{m_h^2}\right) + \kappa_W^2 \log\frac{M_A^2}{M_V^2} \right]$$

$$\Delta T_{\rm NLO}^{\rm P-odd} = \frac{3}{16\pi\cos^2\theta_W} \left\{ 2\kappa_W^2 \frac{\tilde{F}_A}{F_A} - 2\frac{\tilde{F}_V}{F_V} + \frac{M_V^2}{M_A^2 - M_V^2} \log\frac{M_A^2}{M_V^2} \left(2\frac{\tilde{F}_V}{F_V} - 2\kappa_W^2 \frac{M_A^2}{M_V^2} \frac{\tilde{F}_A}{F_A}\right) + \frac{M_V^2}{M_A^2 - M_V^2} \log\frac{M_A^2}{M_V^2} \left[\left(\kappa_W^2 \frac{\tilde{F}_A^2}{F_A^2} - \frac{\tilde{F}_V^2}{F_V^2}\right) \left(1 + \frac{M_A^2}{M_V^2}\right) + 2\frac{\tilde{F}_V \tilde{F}_A}{F_V F_A} \left(\kappa_W^2 \frac{M_A^2}{M_V^2} - 1\right) + 2\left(\frac{\tilde{F}_V^2}{F_V^2} - \kappa_W^2 \frac{\tilde{F}_A^2}{F_A^2} + \left(1 - \kappa_W^2\right) \frac{\tilde{F}_V \tilde{F}_A}{F_V F_A}\right) \right\} + \mathcal{O}\left(\frac{\tilde{F}_{V,A}^3}{F_{V,A}^3}\right)$$

- ✓ We consider only the lightest two-particle absorptive cuts ($\phi\phi$, $h\phi$, $\psi\bar{\psi}$) and in general we take as working assumptions M_A > M_V and $\tilde{F}_{V,A}^2 < F_{V,A}^2$.
- ✓ LO result (T_{LO} =0):

$$\checkmark \quad \text{With 1st and 2nd WSR:} \quad S_{\text{LO}} = \frac{4\pi v^2}{M_V^2} \left(1 + \frac{M_V^2}{M_A^2} \right) \quad \longrightarrow \quad \frac{4\pi v^2}{M_V^2} < S_{\text{LO}} < \frac{8\pi v^2}{M_V^2}$$
$$\checkmark \quad \text{With only the 1st WSR:} \quad S_{\text{LO}} > \frac{4\pi v^2}{M_V^2}$$

NLO result with only the 1st WSR:

$$\begin{split} S_{\rm NLO} &> \frac{4\pi v^2}{M_V^{r\,2}} + \Delta \widetilde{S}_{\rm NLO}^{\rm P-even} + \Delta \widetilde{S}_{\rm NLO}^{\rm P-odd} \\ \Delta \widetilde{S}_{\rm NLO}^{\rm P-even} &= \frac{1}{12\pi} \left[\left(1 - \kappa_W^2 \right) \left(\log \frac{M_V^2}{m_h^2} - \frac{11}{6} \right) - \kappa_W^2 \left(\log \frac{M_A^2}{M_V^2} - 1 + \frac{M_A^2}{M_V^2} \right) \right] \,. \\ \Delta \widetilde{S}_{\rm NLO}^{\rm P-odd} &= \frac{1}{12\pi} \left\{ \left(1 - \frac{M_A^2}{M_V^2} \right) \left[\frac{\widetilde{F}_V^2}{F_V^2} + \kappa_W^2 \frac{\widetilde{F}_A}{F_A} \left(2 \frac{\widetilde{F}_V}{F_V} - \frac{\widetilde{F}_A}{F_A} \right) \right] \right. \\ &+ \log \frac{M_A^2}{M_V^2} \left(\frac{\widetilde{F}_V^2}{F_V^2} - \kappa_W^2 \frac{\widetilde{F}_A^2}{F_A^2} - 2 \frac{\widetilde{F}_V \widetilde{F}_A}{F_V F_A} \right) \right\} + \mathcal{O} \left(\frac{\widetilde{F}_{V,A}^4}{F_{V,A}^4} \right) \end{split}$$

$$T_{\rm NLO} = \Delta T_{\rm NLO}^{P-\text{even}} + \Delta T_{\rm NLO}^{P-\text{odd}}$$

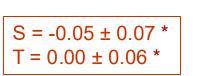
$$\Delta T_{\rm NLO}^{\rm P-\text{even}} = \frac{3}{16\pi \cos^2 \theta_W} \left[\left(1 - \kappa_W^2 \right) \left(1 - \log \frac{M_V^2}{m_h^2} \right) + \kappa_W^2 \log \frac{M_A^2}{M_V^2} \right]$$

$$\Delta T_{\rm NLO}^{\rm P-\text{odd}} = \frac{3}{16\pi \cos^2 \theta_W} \left\{ 2\kappa_W^2 \frac{\tilde{F}_A}{F_A} - 2\frac{\tilde{F}_V}{F_V} + \frac{M_V^2}{M_A^2 - M_V^2} \log \frac{M_A^2}{M_V^2} \left(2\frac{\tilde{F}_V}{F_V} - 2\kappa_W^2 \frac{M_A^2}{M_V^2} \frac{\tilde{F}_A}{F_A} \right) + \frac{M_V^2}{M_A^2 - M_V^2} \log \frac{M_A^2}{M_V^2} \left[\left(\kappa_W^2 \frac{\tilde{F}_A^2}{F_A^2} - \frac{\tilde{F}_V^2}{F_V^2} \right) \left(1 + \frac{M_A^2}{M_V^2} \right) + 2\frac{\tilde{F}_V \tilde{F}_A}{F_V F_A} \left(\kappa_W^2 \frac{M_A^2}{M_V^2} - 1 \right) + 2\left(\frac{\tilde{F}_V^2}{F_V^2} - \kappa_W^2 \frac{\tilde{F}_A^2}{F_A^2} + \left(1 - \kappa_W^2 \right) \frac{\tilde{F}_V \tilde{F}_A}{F_V F_A} \right) \right\} + \mathcal{O}\left(\frac{\tilde{F}_{V,A}^3}{F_{V,A}^3} \right)$$

P-even results correspond to Pich, IR and Sanz-Cillero <u>'13</u> <u>'14</u>

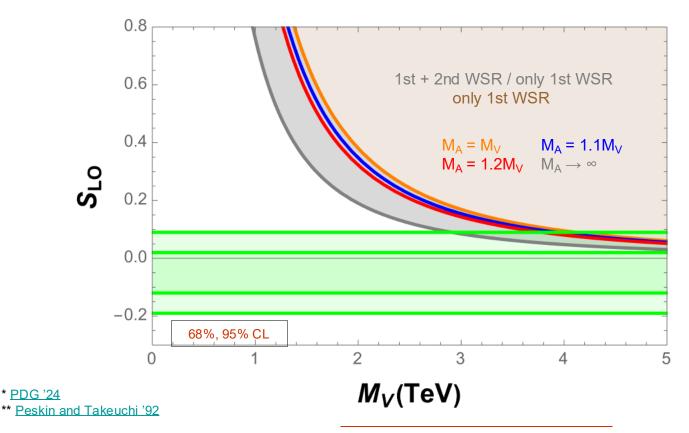
9/12

4. Phenomenology

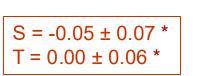


 \checkmark

- Oblique electroweak observables** (S and T).
- Short-distance constraints.
- ✓ Assumptions: lightest two-particle absorptive cuts, $M_A > M_V$ and $\tilde{F}_{V,A}^2 < F_{V,A}^2$.



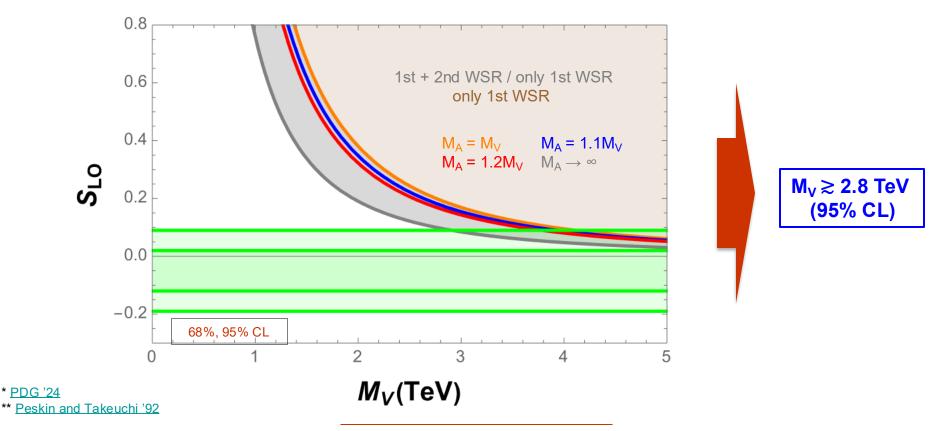
4. Phenomenology

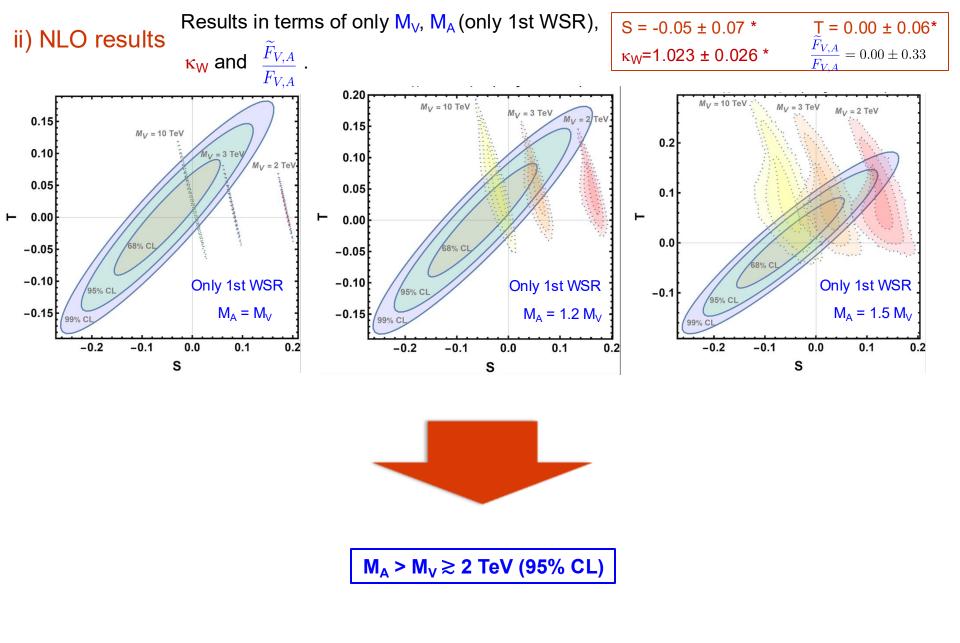


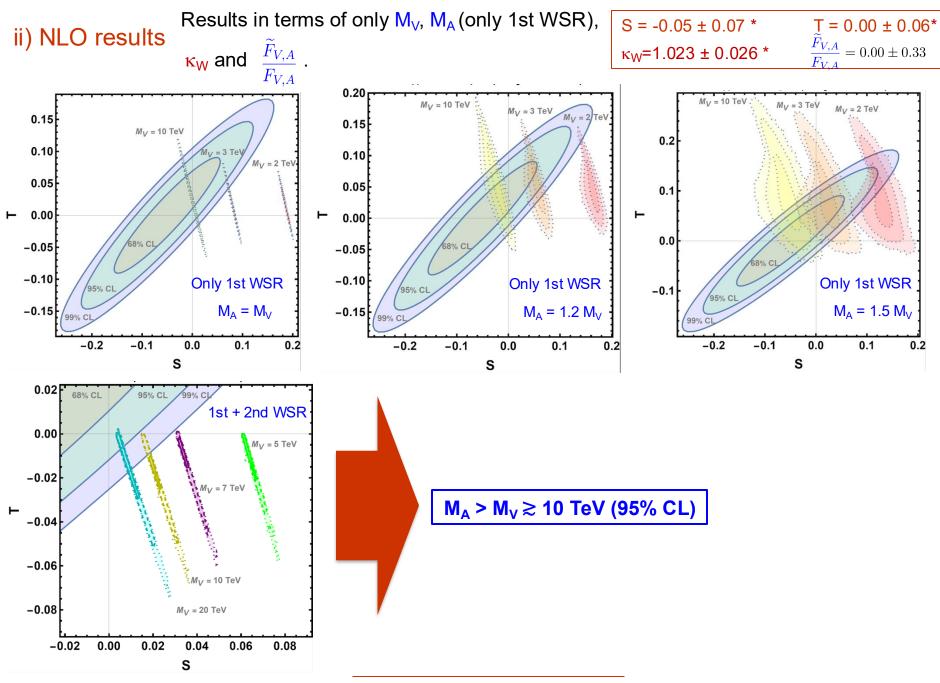
 \checkmark

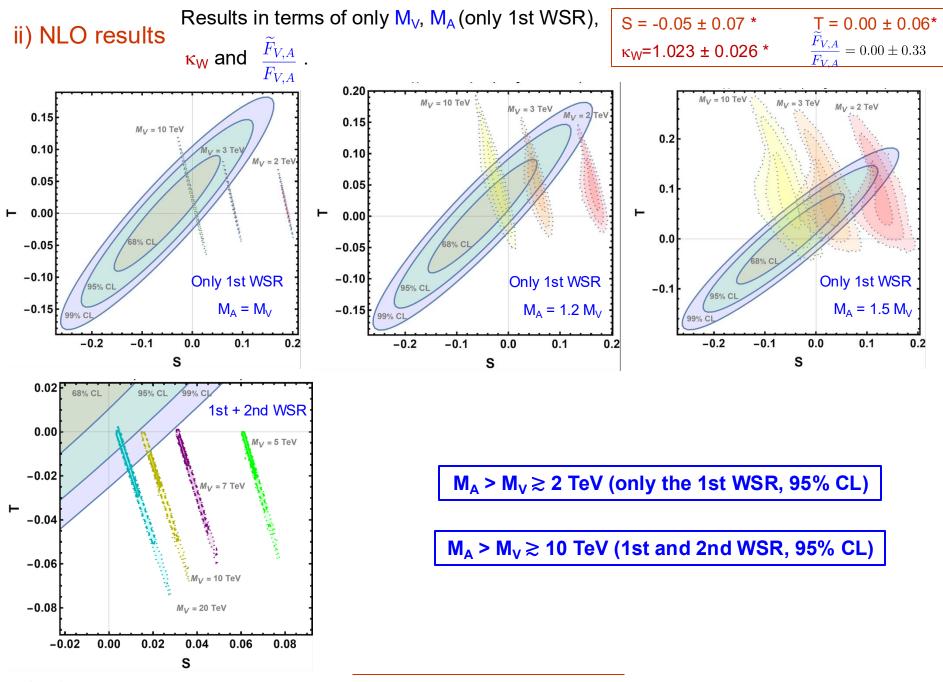
- Oblique electroweak observables** (S and T).
- Short-distance constraints.
- ✓ Assumptions: lightest two-particle absorptive cuts, $M_A > M_V$ and $\tilde{F}_{V,A}^2 < F_{V,A}^2$.

i) LO results









4. Conclusions

- ✓ Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because we have a mass gap.
- As a consequence of the mass gap, bottom-up EFTs are appropriate to search for BSM. Depending on the nature of the EWSB we have two possibilities:
 - ✓ Decoupling (linear) EFT: SMEFT
 - ✓ SM-Higgs, weakly coupled and expansion in canonical dimensions
 - ✓ Non-decoupling (non-linear) EFT: EWET (HEFT or EWChL)
 - Non-SM Higgs, strongly coupled and expansion in loops or chiral dimension
- ✓ Phenomenology: S and T at NLO
 - Short-distance constraints: WSRs and well-behaved form factors at high energies.
 - ✓ Assumptions: lightest two-particle absorptive cuts, $M_A \gtrsim M_V$ and $\tilde{F}_{V,A}^2 < F_{V,A}^2$
 - **S**, **T** and κ_W from the PDG.

✓ Results in terms of only M_V, M_A, and $\frac{\tilde{F}_{V,A}}{F_{V,A}}$

Room for these BSM scenarios
(95% CL) $M_A > M_V \gtrsim 2$ TeV (only 1st WSR)
 $M_A > M_V \gtrsim 10$ TeV (1st and 2nd WSR)