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Motivation

A global view of what experimental data
tells us about new physics

* LHC currently has no clear sign of where
new physics might lie

Overview of SUSY results: squark pair production
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[1] Ilustration from Hitoshi Murayama

[2] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS#Run_2_Summary_Plots_13_TeV, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-41/figaux_07b.png
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Unification

Motivation

A global view of what experimental data
tells us about new physics

* LHC has currently no clear sign of where new
physics may lie

CMS (preliminary)

Overview of SUSY results: squark pair production

* However, dispersed signals might be hiding in [
the slew of LHC data i

* These are easily missed in the usual channel-by-
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Top-Down Approach

Construct a NP Lagrangian

Compute physical observables such
as masses, Cross sections, ..

Compare with data -> get
significance/ limits on observables

Bottom-Up Approach




Bottom-up Approach

Given the data, can we build the next SM Lagrangian?

NSM
Lagrangian

Simplified Models
Results

Proto-models

LHC Data |—p»

* Develop a statistical learning algorithm that identifies potential excesses
amongst the published LHC data, while being compatible with all the constraints

* Build candidate ‘proto-models’ from them

* Based on simplified model results = exploit SModelS functionality and database




SModelS Working Principle

* Public tool which allows for a fast reinterpretation of LHC experimental results

e Confronts BSM signals against simplified model results from the LHC.
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Data

* Experimental constraints from around 200 -5 Tev
110 published LHC results 175 | 13 TeV, £ < 78/fb
. . . . . 13 TeV, full £
* Database distribution of signal region A standard normal

significances under the SM hypothesis,
representing observed deviations from
SM predictions in units of the SM
prediction uncertainty

=
P~
wn

# signal regions
H
o
o

* Notable deviation from the expected
standard normal distribution, particularly
in the right tail, indicating an excess of
upward fluctuations beyond SM g S -
expectations

Signiﬁcances this plot contains 1184 SRs from 69 analyses



Proto-model...?

* Can be thought of as stacks/§ets of simplified Proto-model Particle Content
models - physics objects designed to capture
experimental observations

* Not intended to be fully consistent theoretical Quark Partners
models - properties are not bounded by higher
level theoretical assumptions (such as gauge
symmetries)

Light - X, (@ =ud,c,s)

1,2 41,2
Heavy- X", X,

* Particle content motivated by database
consisting of mostly SUSY-based simplified model Electroweak Partners
searches ) ETaD e

(LsPl= x})

Lepton Partners

. . . Xl’XVI

 Particle masses, production cross-sections and
branching ratios treated as free parameters

[1] Lightest Stable Particle 8



The algorithm

* A prototype of the proto-modelling approach
was published in a proof-of-concept paper ——

* The initial algorithm followed a MCMC-type
random walk, freely adding/removing particles
and other parameters in a varying dimensional
state space

* We now extend the algorithm adapting ideas
from Reversible Jump Markov Chain Monte
Carlo algorithm, first proposed by Green!

[1] Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, P. Green, https://doi.org/10.2307/2337340
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Algorithm Flowchart

Proto-model
Builder

Chain
Converged?

Analyses

Combiner

Constraint
Compeatibility?




Algorithm Flowchart
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Proto-model Builder

and changing any of the proto-
model parameters.

—| Creates proto-models, randomly
adding or removing new particles
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Algorithm Flowchart [

1001 == ATLAS-SUSY-2019-02
---- ATLAS-SUSY-2013-11
——=- CMS-SUS-13-012

754 ---- ATLAS-SUSY-2018-41

—— Combined

Lpsar/Lsa
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Analyses Combiner

Identifies the best possible >
combination of experimental
results and constructs a combined
likelihood for the proto-model

Yes K )




Algorithm Flowchart
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Compute the acceptance >
probability(a) with respect to
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whether to accept or reject.
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Algorit
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Constraint Compatibility

Checks the compatibility of the
proto-model against the
extensive database of results
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Chain Convergence

Evaluate chain convergence by
performing y? tests and
computing its p-value




Run on SModelS Database

SModelS Database: 987 Signal Regions from 60 LHC Results

° Algorithm executed over a B : 2:tnojets+offshell electroweakinos
subset of the proto-model 2 T standard normal
space — considering only =
electroweak partner 100 -
particles i‘: |
* This phase space produces oy
signatures that exhibit more -
excesses compared to the 201

full result set |
-4
significances



Preliminary Results




Posterior Phase Space

Probability of proto-models generated across a walk over the electroweak partner particles
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Current best proto-model

Current proto-model with the maximum deviation from the SM expectation

Production xsecs: (in units of corresponding SUSY xsecs): Proto-model generation driven by two monojet searches —
(X3 X2):0.61, (X2, Xy") : 1.3,(X2, Xy7) : 0.23,(Xi7, Xit) : 2.12 ‘CMS-EX0O-20-004’ and ‘ATLAS-EXOT-2018-16’
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Summary

* A new approach to data driven search for new physics based on simplified model
results, using SModelS framework to construct "proto-models”.

* Proto-models = not fully consistent theoretical models, but try to capture
excesses in data.

* Algorithm borrows ideas from RIMCMC methods, with additional entities — proto-
model builder, analysis combiner and a check against experimental constraints.

* Preliminary runs over the electroweak partner particles favour proto-models with
two neutral electroweak partners and/or one charged electroweak partner.

* Excesses in monojet searches drive proto-model generation with the maximum
deviation from SM expectation.

* Closure tests of the algorithm and its results are in progress.



Thank You!




Back Up




The algorithm

* Follows a random walk, freely adding/removing particles and other parameters
in a varying dimensional state space

« Adapt ideas from Reversible Jump Markov Chain Monte Carlo algorithm, first
proposed by Green

« RIMCMC method retains the reversibility and detailed balance properties of the
Metropolis-Hastings algorithm.

* Requires “dimension matching” while constructing the proposal densities to
account for differences in dimension of different subspaces

Metropolis Hastings detailed balance condition in MCMC:
P(x)q(x »y) = P(y)q(y - x)




The algorithm

« For our case, we require the following detailed balanced condition to be

upheld
Ur,(M; )xmt(M)xq(M; = M;) = Urg(M; )xm(M;)xq(M; - M;) (3)
lr, = %, where c refers to the combination of experimental results for which the likelihood

is being built
(M) = Prior on the particular proto-model

q = Proposal density for jumping between ditferent proto-model states



Proto-model Builder

* The builder block is responsible for random changes in the
proto-model.

1.0 —®— Add particle

* Here we attempt multiple move types and define the —=— Remove partile
proposal densities for each move o

* Changing the dim of the proto-model — define 08 1

(Qadd» Qrem)

* We add/remove parameters to/from the proto-
model with probabilities q44/qem - We could
either add a new particle with all its
corresponding parameters, or add extra
parameters to the current particle content in the 05
proto-model.

Probability
=)
3

oS
[=))
1

0.4+

 Changing the values of existing parameters in the
proto—model 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20
o COHS truct proposal pr Obablh tl es f or ea Ch Current number of particles in protomodel
parameter to be changed




Analysis Combiner

* Initially build a combination matrix, that stores
information of all the experimental results that can
be considered to be approximately uncorrelated,
and thus can be combined

* Collects all the experimental analyses which
provides a result for the proto-model

* Use the “pathfinder”!!l algorithm, which takes in the
set of theory predictions and the combination
matrix and finds the combination with the most
significant deviation from the SM, i.e

¢’ = maxeec [1§ Ly (u = 1) /L%y, (3)

[1]]J.Y.Araz, et.al, “Strength in numbers: Optimal and scalable combination of LHC new-physics searches”, SciPost Phys. 14 (2023)
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Test Statistic

To compare different proto-models with different degrees of freedom, we further define a

test statistic K
LM(H,=1)T[(M) (4)
Lsmm(SM)

K = 2log

where 1 is a prior on the proto-model, that punishes the proto-model for unneeded
complexity (principle of parsimony):

(M) = exp[—("ga’” 4 Doy Tprody1 - p(sM) = 1 (5)

ap as

This test statistic roughly corresponds to a Ay? of the proto-model with respect to the SM,
with a penalty for new degrees of freedom:

K~ Axy?+2 Inn(M) (6)



Acceptance Probability

* To go from M; — M;, we may attempt multiple move types indexed by m, the acceptance

probability becomes:
lr . (M; ( M; \M; - M;
a(M; - M;) =min {1, C(’)x (,)qu(J l% ?)
\ Y J ;| v I
Likelihood Ratio  Prior Ratio Proposal Ratio

\ J
!

1
expl (K; — K9]

Likelihood Ratio = Ratios of llr, = iCEZ i;::g";, where c refers to the combination of experimental
c\H— n

results for which the combined likelihood is computed

Prior ratio = Ratios of prior probabilities on the proto-model M

Proposal ratio = Ratios of proposal densities to move from M;,; - M;;



Critic
 To get constraints on the input protomodel, SModelS computes an observable called “r-value”

Tobs = O-M/O-UL

If r,ps > 1, we conclude the model point to be excluded

Fast Critic Slow Critic
* More robust, but computationally more expensive
* Quickly get upper-limit constraints on the proto- * Find the combined set of analyses which give the most
model sensitive constraints i.e the combination that minimizes

« Allow for a 30% violation of the upper limit, i.e if _ ,
Tops > 1.3, reject the proto-model ¢’ = mingec 1_[ L) (= 1) /1P
i

* Else compute the slow critic

« Compute 1, of the combined likelihood

« If ryps > 1, reject the proto-model




he Posterior phase space

Proto-models generated across a walk
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Closure Tests (Yet to do..)

« Walk on fake-SM data, get distribution of test statistic K under the SM-
only hypothesis, and compute global p-value for K

* Replace the observed data with the expected background plus signal
yields for a given proto-model, run and see if the algorithm discovers this
signal

* Proper convergence over the proto-model parameter space




