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Motivation

• LHC currently has no clear sign of where 
new physics might lie
• However, dispersed signals might be 

hiding in the slew of LHC data

Effects of new physics that are spread out over 
several search regions or final states

A global view of what experimental data 
tells us about new physics

[1] Illustration from Hitoshi Murayama
[2] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS#Run_2_Summary_Plots_13_TeV, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-41/figaux_07b.png 2



• LHC has currently no clear sign of where new 
physics may lie
• However, dispersed signals might be hiding in 

the slew of LHC data
• These are easily missed in the usual channel-by-

channel analysis or disregarded as sta=s=cal 
fluctua=ons
• Change of perspec=ve: a global explora=on of 

LHC data to complement individual final state 
signature analyses 

Motivation
A global view of what experimental data 

tells us about new physics

2[1] Illustration from Hitoshi Murayama
[2] https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS#Run_2_Summary_Plots_13_TeV, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-41/figaux_07b.png 3



Top-Down Approach

Construct a NP Lagrangian

Compute physical observables such 
as masses, cross sections,..

Compare with data -> get 
significance/ limits on observables

Infer NP Lagrangian

Fit (learn) physical observables -
masses, cross sections, …. 

Take data

Bottom-Up Approach
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Bottom-up Approach

• Develop a sta+s+cal learning algorithm that iden+fies poten&al excesses 
amongst the published LHC data, while being compa+ble with all the constraints

• Build candidate ‘proto-models’ from them
• Based on simplified model results → exploit SModelS func+onality and database

Given the data, can we build the next SM Lagrangian?
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SModelS Working Principle
• Public tool which allows for a fast reinterpretation of LHC experimental results
• Confronts BSM signals against simplified model results from the LHC. 

Exploit this part of the 
SModelS framework
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Data

• Experimental constraints from around 
110 published LHC results

• Database distribu;on of signal region 
significances under the SM hypothesis, 
represen;ng observed devia;ons from 
SM predic;ons in units of the SM 
predic;on uncertainty

• Notable devia;on from the expected 
standard normal distribu;on, par;cularly 
in the right tail, indica;ng an excess of 
upward fluctua;ons beyond SM 
expecta;ons
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Proto-model…?
• Can be thought of as stacks/sets of simplified 

models - physics objects designed to capture 
experimental observations

• Not intended to be fully consistent theoretical 
models - properties are not bounded by higher 
level theoretical assumptions (such as gauge 
symmetries)

• Particle content motivated by database 
consisting of mostly SUSY-based simplified model 
searches

• Particle masses, production cross-sections and 
branching ratios treated as free parameters

Proto-model Particle Content

Quark Partners 

Light - !" # = %, ', (, )
Heavy- !*+,,, !-+,,

Gluon Partner

!.

Lepton Partners
!/, !01

Electroweak Partners
!2+,,, !3+,,,4
(LSP[1]= !3+)

[1] Lightest Stable Particle 8



The algorithm

• A prototype of the proto-modelling approach 
was published in a proof-of-concept paper 

• The initial algorithm followed a MCMC-type 
random walk, freely adding/removing particles 
and other parameters in a varying dimensional 
state space

• We now extend the algorithm adapting ideas 
from Reversible Jump Markov Chain Monte 
Carlo algorithm, first proposed by Green[1]

[1] Reversible jump Markov chain Monte Carlo computaGon and Bayesian model determinaGon, P. Green, hKps://doi.org/10.2307/2337340 9

https://arxiv.org/pdf/2012.12246

https://doi.org/10.2307/2337340
https://arxiv.org/pdf/2012.12246


Algorithm Flowchart
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Algorithm Flowchart

Proto-model 
Builder

Start

Accept 
proto-

model?

Analyses
Combiner
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No
Proto-model Builder

Creates proto-models, randomly 
adding or removing new particles 

and changing any of the proto-
model parameters.
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Algorithm Flowchart

Proto-model 
Builder

Start

Accept 
proto-

model?

Analyses
Combiner

Stop

Constraint
Compatibility?

Yes

No

Yes

Yes

No

Chain
Converged?

No

Analyses Combiner

Identifies the best possible 
combination of  experimental 

results and constructs a combined 
likelihood for the proto-model
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Algorithm Flowchart

Proto-model 
Builder

Start

Accept 
proto-

model?

Analyses
Combiner

Stop

Constraint
Compatibility?

Yes

No

Yes

Yes

No

Chain
Converged?

No
Accept Proto-model?

Compute the acceptance 
probability(α) with respect to 

previous proto-model and decide 
whether to accept or reject.

α(# → #%) = min { 1, ../01 #
%, 231

../0 #, 23
×5 #%, 231
5 #, 23

× 671 #% → #
67 # → #% }
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Algorithm Flowchart
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Constraint Compatibility

Checks the compatibility of the 
proto-model against the

extensive database of results
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Algorithm Flowchart
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p-value evolution over steps 

Chain Convergence

Evaluate chain convergence by 
performing !" tests and 
computing its p-value
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Run on SModelS Database

• Algorithm executed over a 
subset of the proto-model 
space – considering only 
electroweak partner 
particles
• This phase space produces 

signatures that exhibit more 
excesses compared to the 
full result set
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Preliminary Results

17



Probability of proto-models generated across a walk over the electroweak partner particles

Posterior Phase Space
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Production xsecs: (in units of corresponding SUSY xsecs):
(("#$, "#&) : 0.61, ("#$, "'$±) : 1.3,("#&, "'$±) : 0.23,("'$), "'$*) : 2.12

+,+
-.-̅.

Current best proto-model
Current proto-model with the maximum deviaFon from the SM expectaFon

Proto-model generation driven by two monojet searches –

‘CMS-EXO-20-004’ and ‘ATLAS-EXOT-2018-16’
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Summary
• A new approach to data driven search for new physics based on simplified model 

results, using SModelS framework to construct ”proto-models”.
• Proto-models → not fully consistent theoretical models, but try to capture 

excesses in data.
• Algorithm borrows ideas from RJMCMC methods, with additional entities – proto-

model builder, analysis combiner and a check against experimental constraints.
• Preliminary runs over the electroweak partner particles favour proto-models with 

two neutral electroweak partners and/or one charged electroweak partner.
• Excesses in monojet searches drive proto-model generation with the maximum 

deviation from SM expectation.
• Closure tests of the algorithm and its results are in progress.
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Thank You!
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Back Up
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The algorithm
• Follows a random walk, freely adding/removing particles and other parameters 

in a varying dimensional state space
• Adapt ideas from Reversible Jump Markov Chain Monte Carlo algorithm, first 

proposed by Green
• RJMCMC method retains the reversibility and detailed balance properties of the 

Metropolis-Hastings algorithm.
• Requires “dimension matching” while constructing the proposal densities to 

account for differences in dimension of different subspaces

Metropolis Hastings detailed balance condition in MCMC:
! " # " → % = ! % #(% → ")
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The algorithm

• For our case, we require the following detailed balanced condition to be 
upheld

!!"# $% ×' $% ×( $% → $* = !!"#, $* ×' $* ×( $* → $%

!!"# = -.(012|4)
-.(016|4)

, where c refers to the combination of experimental results for which the likelihood 

is being built

' $ = Prior on the particular proto-model

q = Proposal density for jumping between different proto-model states

(3)
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Proto-model Builder
• The builder block is responsible for random changes in the 

proto-model.
• Here we attempt multiple move types and define the 

proposal densities for each move

• Changing the dim of the proto-model – define 
(!"##, !%&')
• We add/remove parameters to/from the proto-

model with probabilities !"##/!%&' . We could 
either add a new particle with all its 
corresponding parameters, or add extra 
parameters to the current particle content in the 
proto-model.

• Changing the values of existing parameters in the 
proto-model 
• Construct proposal probabilities for each 

parameter to be changed
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Analysis Combiner

• Initially build a combination matrix, that stores 
information of all the experimental results that can 
be considered to be approximately uncorrelated, 
and thus can be combined

• Collects all the experimental analyses which 
provides a result for the proto-model

• Use the “pathfinder”[1] algorithm, which takes in the 
set of theory predictions and the combination 
matrix and finds the combination with the most 
significant deviation from the SM, i.e

!′ = $%&'∈) ∏+
' ,-+ (/ = 1)/,3-+ (3)

[1] J.Y.Araz, et.al,  “Strength in numbers: Optimal and scalable combination of LHC new-physics searches”, SciPost Phys. 14 (2023) 26



Test Statistic

To compare different proto-models with different degrees of freedom, we further define a 
test statistic K

! = 2log '( )*+ ,(.)
'0(,(1.)

where 2 is a prior on the proto-model, that punishes the proto-model for unneeded 
complexity (principle of parsimony):

2 3 = exp[−(9:;<=>
+ 9?<=@

+ 
9:<AB
=C

)], 2 F3 = 1

This test statistic roughly corresponds to a ΔIJ of the proto-model with respect to the SM, 
with a penalty for new degrees of freedom:

! ≈ ΔIJ + 2 ln 2(3)

(4)

(5)

(6)
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Acceptance Probability

• To go from !" → !$, we may attempt multiple move types indexed by m, the acceptance 
probability becomes:

α(!" → !$ ) = min { 1,
//012 !$
//01 !"

×4 !$
4 !"

× 562 !$ → !"
56 !" → !$

}

Likelihood Ratio Prior Ratio Proposal Ratio

Likelihood Ratio = Ratios of //01 ≡ 9:(;<=|?,@A)
9:(;<B|?,@A)

, where c refers to the combination of experimental 
results for which the combined likelihood is computed

Prior ratio = Ratios of prior probabilities on the proto-model M

Proposal ratio = Ratios of proposal densities to move from !"/$ → !$/"

exp[12 I$ − I" ]

(7)
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Critic

Fast Critic

• Quickly get upper-limit constraints on the proto-
model

• Allow for a 30% violation of the upper limit, i.e if 
!"#$ > 1.3, reject the proto-model

• Else compute the slow critic

Slow Critic
• More robust, but computationally more expensive

• Find the combined set of analyses which give the most 
sensitive constraints i.e the combination that minimizes

)′ = ,-./∈12
3

45
3 (789)(; = 1)/4=5

3 (789)

• Compute !"#$ of the combined likelihood

• If !"#$ > 1, reject the proto-model

• To get constraints on the input protomodel, SModelS computes an observable called “r-value” 
!"#$ = >5/>?@

• If !"#$ > 1 , we conclude the model point to be excluded
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The Posterior phase space
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Closure Tests (Yet to do..)

• Walk on fake-SM data, get distribution of test statistic K under the SM-
only hypothesis, and compute global p-value for K
• Replace the observed data with the expected background plus signal 

yields for a given proto-model, run and see if the algorithm discovers this 
signal
• Proper convergence over the proto-model parameter space
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