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Project scope 

We propose a unique graph construction
with entire LHC dataset as a graph 
where events (as nodes) are connected (by edges) if they have similar kinematics

Classify nodes by learning their connectivity in a neighbourhood of similar nodes 

In most GNNs for HEP, events are graphs 

⟶ How do the graphs impact performance? 
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Project scope 

We compare graph- and non-graph approaches, in parallel studies: 

           model-dependent search                                                        anomaly detection 

We propose a unique graph construction
with entire LHC dataset as a graph 
where events (as nodes) are connected (by edges) if they have similar kinematics

Classify nodes by learning their connectivity in a neighbourhood of similar nodes 

In most GNNs for HEP, events are graphs 

GNN: graph convolutional layers aggregate
features of each node’s neighbours 

Compare: convolutional GNN vs DNN

Unsupervised learning with autoencoder (AE)
and GCN-based graph AE (GAE)

Compare: GAE vs AE

⟶ How do the graphs impact performance? 
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Graphs of LHC events
Collider measurements do not directly reveal underlying physics, so we infer likely processes 

Graph topology highlights data subsets that share characteristics 
E.g. in our case: similar decay chains, intermediate states, production modes

Identify structures of subgraphs: signal-signal, signal-background, background-background 

We seek these structures via: 
network analysis with graph theory 
more powerful approaches using GNNs

New work in this talk

Does SUSY have friends? Paper 2020
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https://arxiv.org/pdf/1912.10625.pdf


Contents

1.Graph design  

a.Distances, nodes and edges

b.Signal models, backgrounds 

c.Validation 

                                  

                        2. ML construction  

a.ConvGNN architecture for model-dependent searches

b.GAE architecture for anomaly detection 

                                              3. Results 

a.Model-dependent performance

b.Anomaly detection performance
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1.   Graph design
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sparse  signal 

MC simulated
SM background

&
BSM signal

substructures with high centrality nodes

Can we achieve additional discrimination of signal from background from graph topology and substructure?

1.   Graph design

Constructing graphs 
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Event selection: signal, background 

1.   Graph design

Simulate  leptoquark model which has no dedicated search yet: 
vector leptoquark coupling to top-neutrino (backgrounds: single-top, ttbar)
apply preselections (MET > 200 GeV) 

Choose a discriminating set of N kinematics, e.g:  
High-level kinematics: composite, often make physics assumptions
Low-level kinematics: final state particle 4-momenta  

Standardise chosen kinematics ⟶ avoid dominance by largest values 

Events are points in an N-dimensional kinematic vector space

 others ....  

An example of signal+background
events in N-dimensional kinematic

space compressed to 2D

LQ
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Distances
Calculate distances between events in the N-dimensional kinematic space 

1.   Graph design
9

Typical familiar metrics, e.g. between events u, v:

3. Earth Mover’s Distance (EMD) 
A measure of how different two
distributions are in shape and
magnitude: see         this source 

1.Euclidean distance

2. Cosine distance

https://link.springer.com/article/10.1023/A:1026543900054
https://link.springer.com/article/10.1023/A:1026543900054


Distances
Calculate distances between events in the N-dimensional kinematic space 

1.   Graph design

= 0.5

Connect
   d < 
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Typical familiar metrics, e.g. between events u, v:

Distance distribution

3. Earth Mover’s Distance (EMD) 
A measure of how different two
distributions are in shape and
magnitude: see         this source 

1.Euclidean distance

2. Cosine distance

https://link.springer.com/article/10.1023/A:1026543900054
https://link.springer.com/article/10.1023/A:1026543900054


Distances
Calculate distances between events in the N-dimensional kinematic space 

1.   Graph design

Typical familiar metrics, e.g. between events u, v:

Convert events into nodes with edges if
their distance d in the kinematic space is
closer than linking length 

Distance distribution

Adjacency matrix

= 0.5

Connect
   d < 

Graph

Nodes with kinematic features
Edges encoding structure
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=

3. Earth Mover’s Distance (EMD) 
A measure of how different two
distributions are in shape and
magnitude: see         this source 

1.Euclidean distance

2. Cosine distance

https://link.springer.com/article/10.1023/A:1026543900054
https://link.springer.com/article/10.1023/A:1026543900054


Graph

1.   Graph design

   d < 
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MC simulated 
background (ttbar, singletop) 

& injection of signal (leptoquark)



1.   Graph design

   d < 

Graph
Final construction: add node weights and edge weights

Nodes: MC event weights
Edges: MC x inverse distance 
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MC simulated 
background (ttbar, singletop) 

& injection of signal (leptoquark)



MC graph represents true proportions of events using
node weights (preserve kinematic shapes)

when oversampling to improve modelling
or subsampling over-represented processes

Checks 

Validation Does MC graph behaviour represent real data graphs? 

1.   Graph design

Possible biases 
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MC graph represents true proportions of events using
node weights (preserve kinematic shapes)

when oversampling to improve modelling
or subsampling over-represented processes

MC graphs connect signal & background to characterise
signal hypotheses, yet also characterise background-
only null hypothesis: 

ensure that SM-only graph is consistent with SM in
SM+signal graph 

Checks 

Validation Does MC graph behaviour represent real data graphs? 

1.   Graph design

Possible biases 
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Checks 

Validation Does MC graph behaviour represent real data graphs? 

1.   Graph design

Possible biases 
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⟶ bulk distributions have consistent shapes

MC graph represents true proportions of events using
node weights (preserve kinematic shapes)

when oversampling to improve modelling
or subsampling over-represented processes

MC graphs connect signal & background to characterise
signal hypotheses, yet also characterise background-
only null hypothesis: 

ensure that SM-only graph is consistent with SM in
SM+signal graph 



2.   ML construction
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GNN: model-dependent search

2.   ML construction

Graph convolutional networks

Our models: PyTorch’s GCNConv and GraphConv 
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Original GCN concept: arxiv:1609.02907

GNN survey: arxiv:1901.00596

Every layer develops a node’s hidden representation
by aggregating information from its neighbours,
which updates the kinematic features using
connected events

https://arxiv.org/pdf/1609.02907
https://arxiv.org/pdf/1901.00596


GNN: model-dependent search

2.   ML construction

Every layer develops a node’s hidden representation
by aggregating information from its neighbours,
which updates the kinematic features using
connected events

Graph convolutional networks

Our models: PyTorch’s GCNConv and GraphConv 

19GNN survey: arxiv:1901.00596

Original GCN concept: arxiv:1609.02907

https://arxiv.org/pdf/1901.00596
https://arxiv.org/pdf/1609.02907


GNN: model-dependent search

2.   ML construction

Weights on nodes represent
effective yields using MC
event weights

Weights on edges emphasise
local relationships: multiply
by inverse distance to value
short-distance edges

Graph convolutional networks

Our models: PyTorch’s GCNConv and GraphConv 

20GNN survey: arxiv:1901.00596

Original GCN concept: arxiv:1609.02907

Every layer develops a node’s hidden representation
by aggregating information from its neighbours,
which updates the kinematic features using
connected events

https://arxiv.org/pdf/1901.00596
https://arxiv.org/pdf/1609.02907


GNN: model-dependent search

2.   ML construction

Graph convolutional networks

Our models: PyTorch’s GCNConv and GraphConv

21GNN survey: arxiv:1901.00596

for degree matrix normalisation with                               

Each convolution:
Original GCN concept: arxiv:1609.02907

Every layer develops a node’s hidden representation
by aggregating information from its neighbours,
which updates the kinematic features using
connected events

Weights on nodes represent
effective yields using MC
event weights

Weights on edges emphasise
local relationships: multiply
by inverse distance to value
short-distance edges

https://arxiv.org/pdf/1901.00596
https://arxiv.org/pdf/1609.02907


GNN: model-dependent searches

2.   ML construction

More GCN hidden layers receive messages from deeper into graph
       ⟶  the final node representation is informed by messages from a further neighbourhood 
       ⟶  in theory, more discriminating

More convolutions 

Convolutions
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GNN: anomaly detection

2.   ML construction

Seek deviations from normal patterns/topologies in high-dimensional data, e.g. rare outlier events, unusual clusters 

How can a similar graph construction contribute to AD strategies? 
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Encoder: graph convolutional layers obtain network embedding for each node 
Decoder: computes pair-wise distances given network embeddings and reconstructs the graph structure
(adjacency matrix) 
Training: learns latent node representations that minimise differences between real vs reconstructed adjacency
matrices 

GAE



GNN: anomaly detection

2.   ML construction

Seek deviations from normal patterns/topologies in high-dimensional data, e.g. rare outlier events, unusual clusters 

How can a similar graph construction contribute to AD strategies? 
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AE

Conv Conv



3.   Results
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Model-dependent search results 

Best area under curve from GraphConv layers with distance=EMD
where the graph is built in a space of low-level kinematics 

3.   Results
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Winning hyperparameters:

Winning graph technique is consistent
across swap of input features in training
from low-level <--> high-level kinematics 



Model-dependent search results 

3.   Results

Z-score for DNN vs GNNs with low-level kinematic inputs
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Z-score: lower-bound cut



Anomaly detection results 

3.   Results
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Parameter choices: 
1.Calculate Euclidean distance between events in 5-dim kinematic space
2.Connect closest 5% of possible neighbours 
3.Choose GAE model 5 layers deep sampling 5 neighbours each time
4.Train AE and GAE unsupervised: background-only samples (10000 events)
5.Inject 10% or 20% ‘anomalous’ leptoquark signal into test samples (10000 events)
6.Evaluate with trained models 

⟶ Can we identify the leptoquark signal as ‘anomalous’?

Preliminary



Anomaly detection results 

3.   Results
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GAE AE

Test sample:
10% signal

20% signal

Preliminary
ROC

To retain 80% signal, we reject
78% of background with the AE,
and 90% with the GAE



Anomaly detection results 

3.   Results
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GAE AE

Test sample:
10% signal

20% signal

Preliminary
Anomaly scores



Conclusions

Model dependent strategy: best performance from GraphConv
(compared with other GNNs and the DNN) 
Anomaly detection: best performance so far from GAE
(compared with AE)
Ongoing work towards robust results with larger graphs 
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Conclusions



Backup
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Kinematic distributions
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Twice-convoluted kinematic distributions
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Node weighting
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Matrix dimensions

36



Distance distributions

Earth Mover’s Distance Euclidean Distance
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https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm

Earth Mover’s Distance
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https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm


GNN: model-dependent searches

2.   ML construction

Solutions: 
restrict the depth of neighbour sampling 

limit number of layers (which also avoids vanishing
gradient problem) 
recursively sample a fixed max number of
neighbours for each node 

torch geometric sparse tensors 
subsampling nodes 
mini-batching 
careful choice of edge fraction (by tuning linking
length) to decrease density of adjacency matrix 
parallelising across multiple GPU

example: 2 layers,
3 neighbours 

Neighbour sampling 

Scalability
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Large LHC datasets ⟶ large scale graph constraints 



Anomaly detection models
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Python libraries for anomaly detection in multivariate data: 

PyGOD PyOD

Python Graph Outlier Detection
Scalable for processes large graphs with mini-
batch and sampling
Our focus: GAE based on Kipf+Welling VGAEs
arXiv:1611.07308, 2016
Implements options for backbone: clustering,
GNN+AE, MF, MLP+AE, GAN, GNN+SSL+AE

Python Outlier Detection
Our focus: autoencoder neural network
Implements other algorithms, of types:
probabilistic, linear model, proximity-based,
outlier ensembles, neural networks, R-graph 

Parameters in our implementations:
N hidden dimensions = 5
N epochs = 20-30 
N layers = 4-6
Loss = MSE



Anomaly detection models
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Other options for AD GNN models in PyGOD:  

AnomalyDAE
Dual autoencoders: 

a.Adjancency (structure) and
attribute matrices as input

b.Attribute-only embeddings

arxiv:2002.03665

arxiv:2406.04690

GUIDE
Structure encoder/decoder separate
from node attribute encoder/decoder
‘Structure’ here refers to common
small-scale motif structures 

https://arxiv.org/pdf/2002.03665
https://arxiv.org/pdf/2406.04690


Hyperparameters

42

4 hidden layers with 12 neurons each 

(multilayer perceptrons, classifier
after the GNN, ignores the graph)

4 message-passing layers each
mapping 32-dim node features, each
using graph structure to update
node embeddings



Results summary: model-dependent search
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