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Project scope @

e In most GNNs for HEP, events are graphs @
e \We propose a unique graph Constructionj]

o with entire LHC dataset as a graph .

o where events (as nodes) are connected (by edges) if they have similar kinematics

e Classify nodes by learning their connectivity in a neighbourhood of similar nodes

-~ How do the graphs impact performance?




Project scope @

e In most GNNs for HEP, events are graphs @
e \We propose a unique graph Constructionj]

o with entire LHC dataset as a graph

o where events (as nodes) are connected (by edges) if they have similar kinematics

e Classify nodes by learning their connectivity in a neighbourhood of similar nodes

e We compare graph- and non-graph approaches, in parallel studies:

model-dependent search anomaly detection

e GNN: graph convolutional layers aggregate e Unsupervised learning with autoencoder (AE)

features of each node’s neighbours and GCN-based graph AE (GAE)
e Compare: convolutional GNN vs DNN e Compare: GAE vs AE

-~ How do the graphs impact performance?




Graphs of LHC events

e Collider measurements do not directly reveal underlying physics, so we infer likely processes

e Graph topology highlights data subsets that share characteristics
o E.g.in our case: similar decay chains, intermediate states, production modes

e |dentify structures of subgraphs: signal-signal, signal-background, background-background

e We seek these structures via: / >09 Does SUSY have friends? Paper 2020

o network analysis with graph theory

o more powerful approaches using GNNs
\j New work in this talk



https://arxiv.org/pdf/1912.10625.pdf
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1. Graph design




constructing graphs

substructures with

a®

sparse signal

\
MC simulated N —
SM background © : /
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Can we achieve additional discrimination of signal from background from graph topology and substructure?

o




Normalised Events / Bin

Event selection: signhal, background

e Simulate leptoquark model which has no dedicated search yet: LQ :
o vector leptoquark coupling to top-neutrino (backgrounds: single-top, ttbar) ) ; Wt gt
o apply preselections (MET > 200 GeV) b Ui, .- . y
-~ T [

e Choose a discriminating set of N kinematics, e.g:
o High-level kinematics: composite, often make physics assumptions
o Low-level kinematics: final state particle 4-momenta

e Standardise chosen kinematics - avoid dominance by largest values
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space compressed to 2D

Events are points in an N-dimensional kinematic vector space :




Distances

e Calculate distances between events in the N-dimensional kinematic space
e Typical familiar metrics, e.g. between events u, v:

1.Euclidean distance d.,. = />

2. Cosine distance d.. =1 —

m o (u—v)? 3. Earth Mover’s Distance (EMD)
u-v A measure of how different two
Vv distributions are in shape and
magnitude: see (3’ this source



https://link.springer.com/article/10.1023/A:1026543900054
https://link.springer.com/article/10.1023/A:1026543900054
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Distances

e Calculate distances between events in the N-dimensional kinematic space
e Typical familiar metrics, e.g. between events u, v:

1.Euclidean distance d.,. = /> ;" ;(ui — v;)%

2. Cosine distance d.,. =1 —

Distance distribution

Leptoquark signal (m o = 1 TeV) sig-sig (mode: 0.102)
{ tt and Single top backgrounds sig-bkg (mode: 1.57)
KLsigsig, sigbkg: 0.995 mn bkg-bkg (mode: 0.306)

| ——
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LQ Hlgh-level kinematic variables cosine distance

< :

Connect !

d<f

u-u

3. Earth Mover’s Distance (EMD)
A measure of how different two
distributions are in shape and
magnitude: see (3’ this source
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Distances

e Calculate distances between events in the N-dimensional kinematic space
e Typical familiar metrics, e.g. between events u, v:

1.Euclidean distance d.,. = /> ;" ;(ui — v;)% 3. Earth Mover’s Distance (EMD)

° ° L U1 1
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Distance distribution magnitude: see (3’ this source
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Connect !

d<f

e Convert events into nodes with edges if
their distance d in the kinematic space is
closer than linking length f

1, if d;; gf. \/
;=
! (). otherwise

A Graph
_lo 11
b e Nodes with kinematic features

1- e Edges encoding structure
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Kinematic |
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Graph

mr,n / GeV

Final construction: add node weights and edge weights

e Nodes: MC event weights
e Edges: MC x inverse distance
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Va I |dat|0n Does MC graph behaviour represent real data graphs?

Possible biases :  Checks
° . E ﬂ% 4 —»— 1000 events 1
e MC graph represents true proportions of events using 5 1O E T e 10T
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Va I |dat|0n Does MC graph behaviour represent real data graphs?

Possible biases

e MC graph represents true proportions of events using
node weights (preserve kinematic shapes)
o when oversampling to improve modelling
o or subsampling over-represented processes

e MC graphs connect signal & background to characterise :

signal hypotheses, yet also characterise background-
only null hypothesis:
o ensure that SM-only graph is consistent with SM in
SM+signal graph
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Va I |dat|0n Does MC graph behaviour represent real data graphs?

Possible biases

e MC graph represents true proportions of events using
node weights (preserve kinematic shapes)
o when oversampling to improve modelling
o or subsampling over-represented processes

e MC graphs connect signal & background to characterise :

signal hypotheses, yet also characterise background-
only null hypothesis:
o ensure that SM-only graph is consistent with SM in
SM+signal graph
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2. ML construction
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GNN: model-dependent search

Graph convolutional networks

e Every layer develops a node’s hidden representation

TRk Gconv Gconv
Outputs by aggregating information from its neighbours,
ReLu - ReLu T e which updates the kinematic features using
= = ol o B D B i B i connected events
= e Our models: PyTorch’s GCNConv and GraphConv

X 3
(2)

h — h
e o 1

(k- (k)

o

& Original GCN concept: arxiv:1609.02907
CO GNN survey: arxiv:1901.00596

18
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GNN: model-dependent search

Graph convolutional networks

araph Geonv Geonv e Every layer develops a node’s hidden representation
Outputs by aggregating information from its neighbours,
Relu | ReLu T which updates the kinematic features using
— S 1P 1] e connected events
288 e Our models: PyTorch’s GCNConv and GraphConv
8
hlgﬂ) h;(;l} hTEZ) hf,k_l) ht(;k}
A H{-1
Tl 0 1 i
0 1 1 419 X 1hr
H(l) = < 1 1 1 >
: Xn1 Xnhr
\ 1- J

& Original GCN concept: arxiv:1609.02907
CO GNN survey: arxiv:1901.00596 19



https://arxiv.org/pdf/1901.00596
https://arxiv.org/pdf/1609.02907

GNN: model-dependent search

Graph convolutional networks

Gconv Gconv
Graph
Outputs
RelLu RelLu T
- - B - > L T
X :Ut
h(ﬂ) htl} h(Z) h(k—l) h(k}
22 fcomn ) ceam 1 {ceom }
A
M1 0 1 T
0 1 1 .| [*11
HY =41 1 1
. Xn1
\ 1-

& Original GCN concept: arxiv:1609.02907
CO GNN survey: arxiv:1901.00596

e Every layer develops a node’s hidden representation
by aggregating information from its neighbours,
which updates the kinematic features using
connected events

e Our models: PyTorch’s GCNConv and GraphConv

e Weights on nodes represent

w® effective yields using MC
\ event weights
xlhr |
: . e Weights on edges emphasise
Anhs | local relationships: multiply

by inverse distance to value
short-distance edges

20
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GNN: model-dependent search

Graph convolutional networks

Graph Geonv Geonv e Every layer develops a node’s hidden representation
Outputs by aggregating information from its neighbours,
ReLu | ReLu _ e which updates the kinematic features using
< = N R = ] el ™ connected events

— e Our models: PyTorch’s GCNConv and GraphConv

4 | .

0) (1) 2) (k-1) (k)
e Weights on nodes represent
i 1) w® effective yields using MC
M o0 1 \ event weights
0 1 1 X11 - Xqp, 1h
HY =11 1 1 l . ] . e Weights on edges emphasise
k 5 . Xn1 Xnh | Whi1 local relationships: multiply

by inverse distance to value

& Original GCN concept: arxiv:1609.02907 short-distance edges

CO GNN survey: arxiv:1901.00596

Each convolution: H(+1) — g(ﬁ—%}iﬁ—%ﬂ(l)w(n)
21

A

for degree matrix normalisation with D;; = Zj /ziz'j



https://arxiv.org/pdf/1901.00596
https://arxiv.org/pdf/1609.02907
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GNN: model-dependent searches

Convolutions

e More GCN hidden layers receive messages from deeper into graph

- the final node representation is informed by messages from a further neighbourhood
- In theory, more discriminating

V5 =13 TeV, 370 fb? Background
| Leptoquark signal (m,o = 1 TeV) Signal
tt and Single top backgrounds
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More convolutions

— >
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Linking length at 0.1 edge fraction
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GNN: anomaly detection

How can a similar graph construction contribute to AD strategies?

Seek deviations from normal patterns/topologies in high-dimensional data, e.g. rare outlier events, unusual clusters

Gconv Geconv

Al N&<] Z Z z' 4
GAE ndb IR V] BINES IR PR NN,
_) g ny -* . -* ' . | -* f
i '.. = w - w ' - bt - . - N a ..: L
L ] [ ] [ ] . y -| f/l
X "0 W . /
. | u ey Decoder
o000 )
Encoder

e Encoder: graph convolutional layers obtain network embedding for each node
e Decoder: computes pair-wise distances given network embeddings and reconstructs the graph structure
(adjacency matrix)
 Training: learns latent node representations that minimise differences between real vs reconstructed adjacency
matrices
23




GNN: anomaly detection

__? How can a similar graph construction contribute to AD strategies?

Seek deviations from normal patterns/topologies in high-dimensional data, e.g. rare outlier events, unusual clusters

Conv Con
¢

»
'
e b
|
tJ:, )
AE LX)
o ooo-l) © p e
ey Jni B
X;lt;. .. : )
®33304 eoobe , Decoder
so0e
Encoder




3. Results
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Model-dependent search results

Convolution model Distance metric Graph domain AUC (validation) BeSt area u nder curve fro m G raphCO nv laye 'S Wlth d |Stan ce= EM D
e e e v — where the graph is built in a space of low-level kinematics
GCN Euclidean High-level kinematic space 0.951
GCN Cosine High-level kinematic space 0.954
GraphConv Euclidean High-level kinematic space 0.943 . .
GraphConv Cosine High-level kinematic space 0.952 WI nni ng hy pe rparam ete I's:

GCN EMD Low-level kinematic space 0.954 Convolution model Distance metric Graph domain GNN layers Edge fraction Ndﬁl;l:lo;rsl:;erz:]:led Dropout

GraphConv EMD Low-level kinematic space 0.972
. .. . DNN 0.05
Low-level kinematic input variables
T GraphConv | EMD Low-level kinematic space [12, 12] 0.2 [60, 6] 0.0

DNN 0.919
GCN Euclidean Low-level kinematic space 0.826 NN 01
GCN Cosine Low-level kinematic space 0.852 GraphConv EMD Low-level kinematic space 12, 12] 0-1 (60, 6] 0.0
GCN EMD Low-level kinematic space 0.901
GraphConv Euclidean Low-level kinematic space 0.812
GraphConv Cosine Low-level kinematic space 0.804 . . . . .
e Winning graph technique is consistent
GraphConv EMD Low-level kinematic space 0.951 . . L.
_ across swap of input features in training
GCN Euclidean Latent space 0.892 i . .
-— <__> -
N Cosine L atent space 0.901 from low-level high-level kinematics
GraphConv Euclidean Latent space 0.892
GraphConv Cosine Latent space 0.873
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Model-dependent search results

Z-score for DNN vs GNNs with low-level kinematic inputs

Baseline DNN — Signal 2 1045- GraphConv (euclidean)
Background l% 103 _
102}
101 _
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Q = Q
& 103} o 10°F
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] 101 F
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o 3
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i | w
£ 10* LaSClEND) e VS=13.6TeV, 370 b1
z . S LQ signal (m,o = 1 TeV), tt and Single top backgrounds
g 1 £ 81 High-level input kinematics
102 B .g‘ Comparing distance metrics & models
N 6 - 20% uncertainty on background
101 -
Convolution model Distance metric Graph domain AUC (validation)
DNN 0.956
. . 01
GraphConv EMD Low-level kinematic space 0.972 ' ; ' '
0.0 0.2 0.4 0.6 0.8 1.0

Output score

/-score: lower-bound cut
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Anomaly detection results

Parameter choices:
1.Calculate Euclidean distance between events in 5-dim kinematic space

2.Connect closest 5% of possible neighbours

3.Choose GAE model 5 layers deep sampling 5 neighbours each time

4.Train AE and GAE unsupervised: background-only samples (10000 events)

5.Inject 10% or 20% ‘anomalous’ leptoquark signal into test samples (10000 events)

6.Evaluate with trained models

- Can we identify the leptoquark signal as ‘anomalous’?

28



Anomaly detection results
GAE

ROC
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Anomaly detection results

Anomaly scores =

Test sample:
10% signal
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e Anomaly detection: best performance so far from GAE | s
(compared with AE) ®
e Ongoing work towards robust results with larger graphs .
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Normalised Events / Bin

Normalised Events / Bin

Kinematic

distributions
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Normalised No. Events

Normalised No. Events

Twice-convoluted kinematic
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Node weighting

B b1, b2, b3

Figure 15: The principle of node splitting invariance means that a node-weighted graph
G is equivalent to a refined graph G’ where all nodes have been split into a number of
unweighted nodes proportional to the weight. Here node B is split into bl, b2 and b3. The
nodes bl, b2 and b3 are assumed to have i) full internal connectivity (red links) and ii)

identical external connectivity (purple links).
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Matrix dimensions

HO =

i g -1 w® b
0 1
1 1 X11 xlhf l - W11 Win —bl 1
. Xn1 Xnhr \Whi1 Whih Dy1
|
{[nxXn] X [nxh'} [h'Xh] [nXh]
\ )
Y
[nXxh'] X |h'Xh] [nXh]
\ )
Y
[nXh] + [nxh]
\ )
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[nXxh]
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Distance distributions
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Earth Mover’s Distance

Computing the EMD is based on a solution to the well-known fransportation problem [1]. Suppose that several suppliers, each with a given amount of goods, are required to supply

several consumers, each with a given limited capacity. For each supplier-consumer pair, the cost of transporting a single unit of goods is given. The transportation problem is then to find
a least-expensive flow of goods from the suppliers to the consumers that satisfies the consumers' demand. Matching signatures can be naturally cast as a transportation problem by
defining one signature as the supplier and the other as the consumer, and by setting the cost for a supplier-consumer pair to equal the ground distance between an element in the first
signature and an element in the second. Intuitively, the solution is then the minimum amount of ~work" required to transform one signature into the other.

This can be formalized as the following linear programming problem: Let P = {(p1.wp, ). ....{pm.w;, )} be the first signature with m clusters, where p; is the cluster representative and

wp; is the weight of the cluster; € = {{g1. wq, ). .. .. (gn. wg,)} the second signature with n clusters; and D = [d;;] the ground distance matrix where dj;is the ground distance between

clusters p;and g.

We want to find a flow F = [f;;], with fj the flow between p;and g, that minimizes the overall cost

m n

WORK(P.Q.F) =) > fijdi; .

i=1l j=1

subject to the following constraints:

fij = 0 l1<i<m,1<j<n
mn
Zf.,-j < 1wy, 1 <i<m
i=1
i
Y fii € w, 1<j<n
i=1

2.0 fiy = min(}wp, ) wy).
i=1 =1

i=1 j=1

The first constraint allows moving "“supplies" from Pto Q and not vice versa. The next two constraints limits the amount of supplies that can be sent by the clusters in P to their weights,

and the clusters in Q to receive no more supplies than their weights; and the last constraint forces to move the maximum amount of supplies possible. We call this amount the fotal flow.
Once the transportation problem is solved, and we have found the optimal flow F, the earth mover's distance is defined as the work normalized by the total flow:

EjllE:;:Iﬁﬁdﬁ .
E:?;1E:;=1fﬁ

EMD(P. Q) =

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/RUBNER/emd.htm
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GNN: model-dependent searches
Scalability

Large LHC datasets - large scale graph constraints

Solutions: Neighbour sampling
e restrict the depth of neighbour sampling \

o limit number of layers (which also avoids vanishing B
gradient problem) \ /
o recursively sample a fixed max number of \
neighbours for each node ~—
e torch geometric sparse tensors L /)(/
e subsampling nodes N
e mini-batching
e careful choice of edge fraction (by tuning linking example: 2 layers,
length) to decrease density of adjacency matrix 3 neighbours
e parallelising across multiple GPU
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Anomaly detection models

Python libraries for anomaly detection in multivariate data:

PyGOD ; PyOD
e Python Graph Outlier Detection e Python Outlier Detection
e Scalable for processes large graphs with mini- e Our focus: autoencoder neural network
batch and sampling e I[mplements other algorithms, of types:
e Our focus: GAE based on Kipf+Welling VGAEs probabilistic, linear model, proximity-based,

arXiv:1611.07308, 2016 outlier ensembles, neural networks, R-graph

e Implements options for backbone: clustering,
GNN+AE, MF, MLP+AE, GAN, GNN+SSL+AE

* Parameters in our implementations: MSE — 1 Zn:(Y - 1}.)2
o N hidden dimensions =5 n 4 Z Z
° N epOChS =20-30 MSE = mean squared error
o N layel‘S =4-6 n = number of data points
o Loss = MSE Y, = observed values

40

}}é = predicted values




Anomaly detection models

Other options for AD GNN models in PyGOD:

o —— - —

= ) A (2 =
GUIDE mmm /*""'\ :i!-l E @ o @ | @ ! 7'; E @ : x-
Bl | eyl | e
e Structure encoder/decoder separate wnon g g v @ @ f_%' et & = = pmnms
. Attributed Network G = (A.X) | : : ! @
from node attribute encoder/decoder et LS B (Sad} R
Attribute Encoder Attribute Decoder — .
e ‘Structure’ here referstocommon @
. & i =1 el ®
small-scale motif structures Lo IR PE1 RS q B POy | I P s _ =
i ;f_} _b: t/: o), A o) od E_} .I_} /: _ mmem |
. 7 gl gl gl =gl =
CO arxiv:2406.04690 ii% iIs * ; k3
Moot Structure Encoder Structure Decod

AnomalyDAE ‘\ -

Embedding

e Dual autoencoders:

a.Adjancency (structure) and :
attribute matrices as input 5 :
b.Attribute-only embeddings 5
&’ arxiv:2002.03665 L D o

i : Attribute Autoencoder !
I- - - .



https://arxiv.org/pdf/2002.03665
https://arxiv.org/pdf/2406.04690

Hyperparameters

Neighbours sampled

Convolution model Distance metric Graph domain GNN layers MLP layers Edge fraction [nodes, layers] Dropout
High-level kinematic input variables
DNN 12, 12, 12, 12] 0.05
GCN Euclidean High-level kinematic space [32, 32, 32, 32] [12, 12] 0.2 [60, 6] 0.0
GCN Cosine High-level kinematic space [32, 32, 32, 32] [12, 12] 0.2 [60, 6] 0.0
GraphConv Euclidean High-level kinematic space [32, 32, 32, 32] [12, 12] 0.2 [60, 6] 0.0
GraphConv Cosine High-level kinematic space [32, 32, 32, 32] 0.0
GCN EMD Low-level kinematic space  [32, 32, 32, 32] 2, 12] 0.0
GraphConv EMD Low-level kinematic space  [32, 32, 32, 32] [12, 12] 0.2
Low-level kinematic input variables
DNN 12, 12, 12, 12] 0.1
GCN Euclidean Low-level kinematic space  [32, 32, 32, 32] [12, 12] 0.1 [60, 6] 0.0
GCN Cosine Low-level kinematic space  [32, 32, 32, 32] [12, 12] 0.1 [60, 6] 0.0
GCN EMD Low-level kinematic space  [32, 32, 32, 32] [12, 12] 0.1 [60, 6] 0.0
GraphConv Euclidean Low-level kinematic space  [32, 32, 32, 32] [12, 12] 0.1 60, 6] 0.0
GraphConv Cosine Low-level kinematic space [12, 12] 0.1 [20, 2] 0.0
GraphConv EMD Low-level kinematic space  [32, 32, 32, 32] [12, 12] 0.1 [60, 6] 0.0
GCN Euclidean Latent space [32, 32, 32, 32] [12, 12] 0.1 [60, 6] 0.0
GCN Cosine Latent space [32, 32, 32, 32] [12, 12] 0.1 [60, 6] 0.0
GraphConv Euclidean Latent space [32, 32, 32, 32] [12, 12] 0.1 [60, 6] 0.0
GraphConv Cosine Latent space [32, 32, 32, 32] [12, 12] 0.1 [60, 6] 0.0

Table 6.2: Table summarising the neural network architecture used in the training for each variation of the baseline DNN and GNN models.

4 hidden layers with 12 neurons each

(multilayer perceptrons, classifier
after the GNN, ignores the graph)

4 message-passing layers each
mapping 32-dim node features, each
using graph structure to update
node embeddings
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Results summary: model-dependent search

Convolution model Distance metric Graph domain AUC (validation)

High-level kinematic input variables

DNN 0.956
GCN Euclidean High-level kinematic space 0.951
GCN Cosine High-level kinematic space 0.954
GraphConv Euclidean High-level kinematic space 0.943
GraphConv Cosine High-level kinematic space 0.952
GCN EMD Low-level kinematic space 0.954
GraphConv EMD Low-level kinematic space 0.972
Low-level kinematic input variables
DNN 0.919
GCN Euclidean Low-level kinematic space 0.826
GCN Cosine Low-level kinematic space 0.852
GCN EMD Low-level kinematic space 0.901
GraphConv Euclidean Low-level kinematic space 0.812
GraphConv Cosine Low-level kinematic space 0.804
GraphConv EMD Low-level kinematic space 0.951
GCN Euclidean Latent space 0.892
GCN Cosine Latent space 0.901
GraphConv Euclidean Latent space 0.892
GraphConv Cosine Latent space 0.873

Table 6.3: Table summarising the Area Under the ROC curves (AUC) values evaluated on the
validation dataset, for the baseline DNNs and various GNN models, trained using the high-level or
low-level kinematic variables as input features.




