

Contribution ID: 508

Type: Parallel

Stau searches at future e+e- colliders

The direct pair-production of the superpartner of the τ -lepton, the $\tilde{\tau}$, is one of the most interesting channels to search for SUSY in: the $\widetilde{\tau}$ is likely to be the lightest of the scalar leptons, and is one of the most experimentally challennging ones. The current model-independent $\widetilde{\tau}$ limits come from LEP, while limits obtained at the LHC do extend to higher masses, but are model-dependent. The future Higgs factories will be powerful facilities for SUSY searches, offering advantages with respect to previous electron-positron colliders as well as to hadron machines. In order to quantify the capabilities of these future e^+e^- colliders, the "worst-case" scenario for $\tilde{\tau}$ exclusion/discovery has been studied, taking into account the effect of the $\widetilde{\tau}$ mixing on $\widetilde{\tau}$ production cross-section and detection efficiency. To evaluate the latter, the ILD concept, originally developed for the International Linear Collider (ILC), and the ILC beam conditions at a centre-of-mass energy of 500\,GeV have been used for detailed simulations. The obtained exclusion and discovery reaches extend to only a few GeV below the kinematic limit even in the worst-case scenario. A recast of the results of the detailed simulation study to ILC at different CM energies, and to the experimental environment of other proposed Higgs factory projects is also presented.

Secondary track

Authors: LIST, Jenny (DESY); NÚÑEZ PARDO DE VERA, María Teresa (DESY); Dr BERGGREN, Mikael (DESY)

Presenter: NÚÑEZ PARDO DE VERA, María Teresa (DESY)

Session Classification: T09

Track Classification: T09 - Beyond the Standard Model