

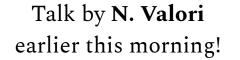
The Electric Dipole Moment of the electron in the decoupling limit of the aligned Two-Higgs Doublet Model

Juan Manuel Dávila Illán IFIC (Universitat de València, CSIC)

In collaboration with Anirban Karan, Emilie Passemar, Antonio Pich & Luiz Vale Silva [2504.16700]

> July 8th, 2025 EPS 2025 - Marseille (France)

Juan Manuel Dávila Illán (IFIC)



Description

The Electric Dipole Moment of the electron (eEDM) is typically investigated in experiments using paramagnetic molecules. However, the physical observable in these searches consists of a linear combination of CP-violating interactions, rather than the eEDM alone, which is commonly referred to as the equivalent EDM of the system. Assuming the presence of new CP-odd physics from heavy degrees of freedom, I parametrize its effects within the Standard Model Effective Field Theory (SMEFT) framework. In this talk, I will present the contributions to the full low-energy direction probed by EDM searches, focusing on leading-order effects at dimension six and one-loop level, while also discussing selected two-loop and dimension-eight contributions. I will highlight that eEDM experiments are sensitive to a broader class of SMEFT operators than previously recognized.

Secondary track T07 - Flavour Physics and CP Violation

Electric Dipole Moments (EDMs)

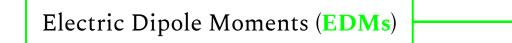
$$\mathcal{L}_{\rm EDM} = -\frac{i}{2}d(\bar{f}\sigma^{\mu\nu}\gamma_5 f)F_{\mu\nu}$$

Electric Dipole Moments (EDMs)

$$\mathcal{L}_{\rm EDM} = -\frac{i}{2}d(\bar{f}\sigma^{\mu\nu}\gamma_5 f)F_{\mu\nu}$$

Sensitive observables to CP-violating (CPV) interactions [Pospelov, Ritz, '05]

Juan Manuel Dávila Illán (IFIC)

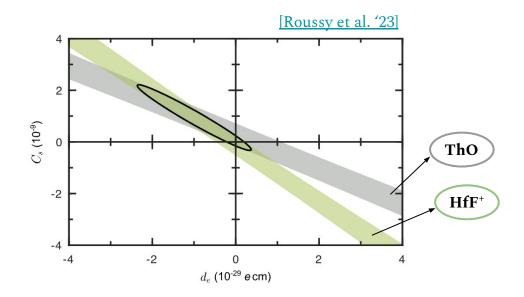


$$\mathcal{L}_{\rm EDM} = -\frac{i}{2}d(\bar{f}\sigma^{\mu\nu}\gamma_5 f)F_{\mu\nu}$$

Sensitive observables to CP-violating (CPV) interactions [Pospelov, Ritz, '05]

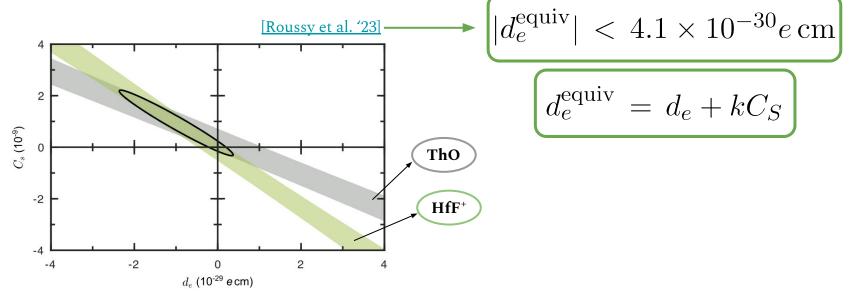
Contributions from **New Physics** (NP)!!

Current experiments cannot distinguish between eEDM and electron-nucleon CP-odd interactions.



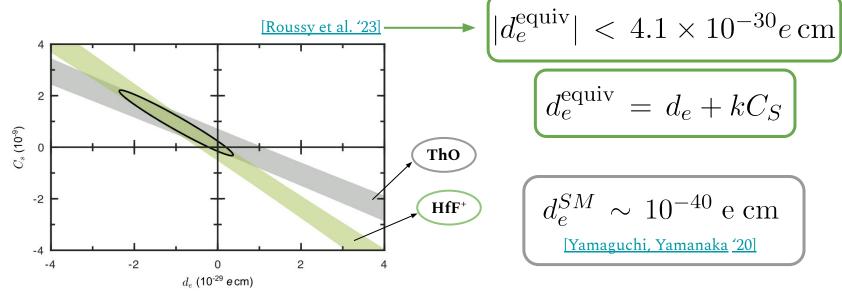
Juan Manuel Dávila Illán (IFIC)

Current experiments cannot distinguish between eEDM and electron-nucleon CP-odd interactions.

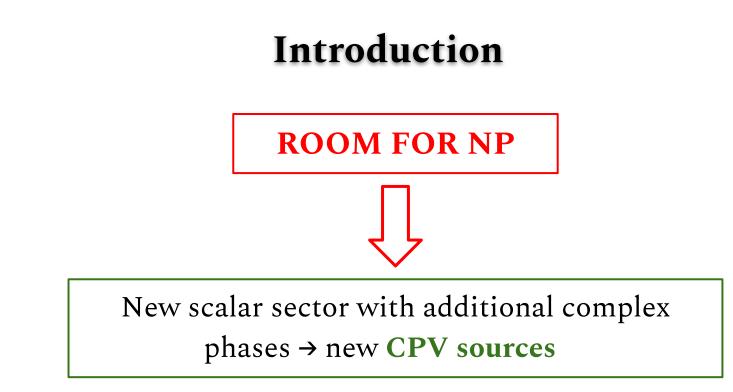


Juan Manuel Dávila Illán (IFIC)

Current experiments cannot distinguish between eEDM and electron-nucleon CP-odd interactions.



Juan Manuel Dávila Illán (IFIC)



In 2 Higgs-Doublet Models (**2HDMs**), the SM is extended with a **second scalar doublet** with hypercharge **Y** = ½. Working in the **Higgs basis**, only the first doublet gets a vev:

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \ G^+ \\ v + S_1 + i \ G^0 \end{pmatrix} \quad \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \ H^+ \\ S_2 + i \ S_3 \end{pmatrix}$$

In 2 Higgs-Doublet Models (**2HDMs**), the SM is extended with a **second scalar doublet** with hypercharge **Y** = ½. Working in the **Higgs basis**, only the first doublet gets a vev:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \ G^{+} \\ v + S_{1} + i \ G^{0} \end{pmatrix} \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \ H^{+} \\ S_{2} + i \ S_{3} \end{pmatrix}$$

$$\underbrace{\left[\begin{smallmatrix} vev \\ (246 \ GeV) \end{smallmatrix} \right]}$$

Juan Manuel Dávila Illán (IFIC)

In 2 Higgs-Doublet Models (**2HDMs**), the SM is extended with a **second scalar doublet** with hypercharge $Y = \frac{1}{2}$. Working in the **Higgs basis**, only the first doublet gets a vev:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & G^{+} \\ v + S_{1} + i & G^{0} \end{pmatrix} \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & H^{+} \\ S_{2} + i & S_{3} \end{pmatrix}$$

$$(246 \text{ GeV})$$

Juan Manuel Dávila Illán (IFIC)

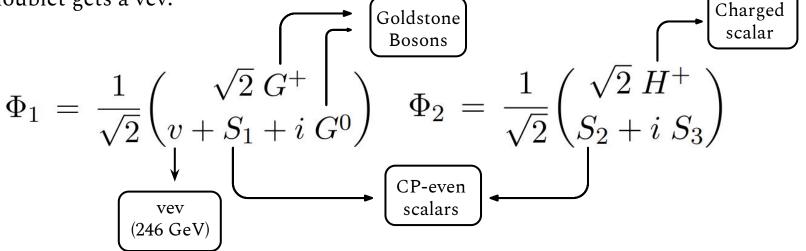
In 2 Higgs-Doublet Models (**2HDMs**), the SM is extended with a **second scalar doublet** with hypercharge $Y = \frac{1}{2}$. Working in the **Higgs basis**, only the first doublet gets a vev:

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \ G^{+} \\ v + S_{1} + i \ G^{0} \end{pmatrix} \quad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \ H^{+} \\ S_{2} + i \ S_{3} \end{pmatrix}$$

$$\underbrace{^{\text{Vev}}_{\text{(246 GeV)}}}$$

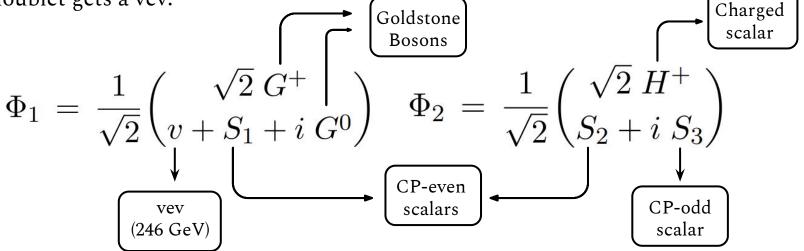
Juan Manuel Dávila Illán (IFIC)

In 2 Higgs-Doublet Models (**2HDMs**), the SM is extended with a **second scalar doublet** with hypercharge $Y = \frac{1}{2}$. Working in the **Higgs basis**, only the first doublet gets a vev:



Juan Manuel Dávila Illán (IFIC)

In 2 Higgs-Doublet Models (**2HDMs**), the SM is extended with a **second scalar doublet** with hypercharge $Y = \frac{1}{2}$. Working in the **Higgs basis**, only the first doublet gets a vev:



2HDMs: Scalar Potential

Most general, CP-violating scalar potential:

$$V = \mu_1 \Phi_1^{\dagger} \Phi_1 + \mu_2 \Phi_2^{\dagger} \Phi_2 + \left[\mu_3 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) \right)$$
$$+ \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \left[\left(\frac{\lambda_5}{2} \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right) \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right]$$

2HDMs: Scalar Potential

Most general, CP-violating scalar potential:

$$V = \mu_1 \Phi_1^{\dagger} \Phi_1 + \mu_2 \Phi_2^{\dagger} \Phi_2 + \left[\mu_3 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) \right)$$
$$+ \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \left[\left(\frac{\lambda_5}{2} \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right) \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right]$$

The neutral scalars will mix with each other and produce the mass eigenstates:

$$\varphi_i = \mathcal{R}_{ij} S_j \quad \longrightarrow \quad \varphi_i \in \{H_1, H_2, H_3\}$$

Juan Manuel Dávila Illán (IFIC)

2HDMs: Scalar Potential

Most general, CP-violating scalar potential:

$$V = \mu_1 \Phi_1^{\dagger} \Phi_1 + \mu_2 \Phi_2^{\dagger} \Phi_2 + \left[\mu_3 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}\right] + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1\right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2\right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1\right) \left(\Phi_2^{\dagger} \Phi_2\right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2\right) \left(\Phi_2^{\dagger} \Phi_1\right) + \left[\left(\frac{\lambda_5}{2} \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2\right) \left(\Phi_1^{\dagger} \Phi_2\right) + \text{h.c.}\right]$$

The neutral scalars will mix with each other and produce the mass eigenstates:

$$\varphi_i = \mathcal{R}_{ij} S_j \quad \longrightarrow \quad \varphi_i \in \{H_1, H_2, H_3\}$$

• In general, some parameters from the potential can be complex \rightarrow in usual 2HDMs, the parameters λ_6 and λ_7 vanish in the \mathbb{Z}_2 -symmetric basis.

2HDMs: Flavour Sector

In the Higgs basis, the most general Yukawa Lagrangian is:

$$\begin{aligned} -\mathcal{L}_{Y} &= \left(1 + \frac{S_{1}}{v}\right) \left\{ \bar{u}_{L} M_{u} u_{R} + \bar{d}_{L} M_{d} d_{R} + \bar{l}_{L} M_{l} l_{R} \right\} \\ &+ \frac{1}{v} \left(S_{2} + iS_{3}\right) \left\{ \bar{u}_{L} Y_{u} u_{R} + \bar{d}_{L} Y_{d} d_{R} + \bar{l}_{L} Y_{l} l_{R} \right\} \\ &+ \frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u}_{L} V Y_{d} d_{R} - \bar{u}_{R} Y_{u}^{\dagger} V d_{L} + \bar{\nu}_{L} Y_{l} l_{R} \right\} + \text{h.c.} \end{aligned}$$

In general, 2HDMs suffer from tree-level **Flavour Changing Neutral Currents** (FCNCs), which are tightly constrained.

Juan Manuel Dávila Illán (IFIC) EPS 2025

2HDMs: Flavour Sector

In the Higgs basis, the most general Yukawa Lagrangian is:

$$\begin{aligned} -\mathcal{L}_{Y} &= \left(1 + \frac{S_{1}}{v}\right) \left\{ \bar{u}_{L} M_{u} u_{R} + \bar{d}_{L} M_{d} d_{R} + \bar{l}_{L} M_{l} l_{R} \right\} \\ &+ \frac{1}{v} \left(S_{2} + iS_{3}\right) \left\{ \bar{u}_{L} Y_{u} u_{R} + \bar{d}_{L} Y_{d} d_{R} + \bar{l}_{L} Y_{l} l_{R} \right\} \\ &+ \frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u}_{L} V Y_{d} d_{R} - \bar{u}_{R} Y_{u}^{\dagger} V d_{L} + \bar{\nu}_{L} Y_{l} l_{R} \right\} + \text{h.c.} \end{aligned}$$

Alignment condition:

$$Y_u = \varsigma_u^* M_u \qquad Y_{d,l} = \varsigma_{d,l} M_{d,l}$$

Juan Manuel Dávila Illán (IFIC)

2HDMs: Flavour Sector

Interaction part of the Yukawa Lagrangian (with mass eigenstates):

$$-\mathcal{L}_{Y} = \frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[\underline{\varsigma_{d}} V M_{d} \mathcal{P}_{R} - \underline{\varsigma_{u}} M_{u}^{\dagger} V \mathcal{P}_{L} \right] d + \underline{\varsigma_{l}} \bar{\nu} M_{l} \mathcal{P}_{R} l \right\} \\ + \frac{1}{v} \sum_{i,f} y_{f}^{i} \varphi_{i} \bar{f} M_{f} \mathcal{P}_{R} f + \text{h.c.}$$

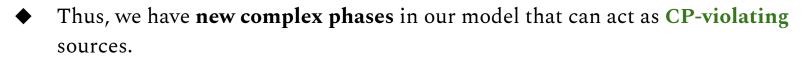
• C2HDM: imposition of a discrete \mathbb{Z}_2 symmetry \rightarrow it is possible to find a basis where only one of the doublets couples to a given kind of fermion: the flavour alignment parameters are real and dependent on each other.

The Aligned 2HDM

Interaction part of the Yukawa Lagrangian (with mass eigenstates):

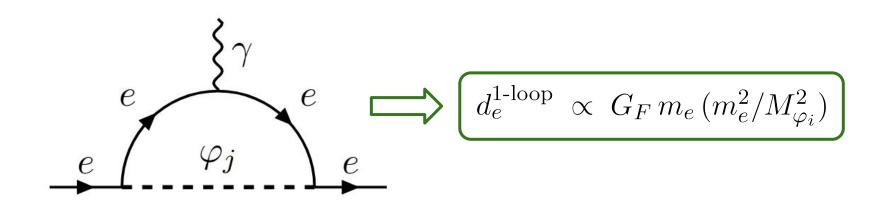
$$-\mathcal{L}_{Y} = \frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[\underline{\varsigma_{d}} V M_{d} \mathcal{P}_{R} - \underline{\varsigma_{u}} M_{u}^{\dagger} V \mathcal{P}_{L} \right] d + \underline{\varsigma_{l}} \bar{\nu} M_{l} \mathcal{P}_{R} l \right\} \\ + \frac{1}{v} \sum_{i,f} y_{f}^{i} \varphi_{i} \bar{f} M_{f} \mathcal{P}_{R} f + \text{h.c.}$$

Alternatively, the **Aligned 2HDM** (A2HDM) solves the issue of FCNCs by considering that the *g* are **independent**, **complex parameters**, without assuming any additional symmetry [Pich, Tuzón '09].

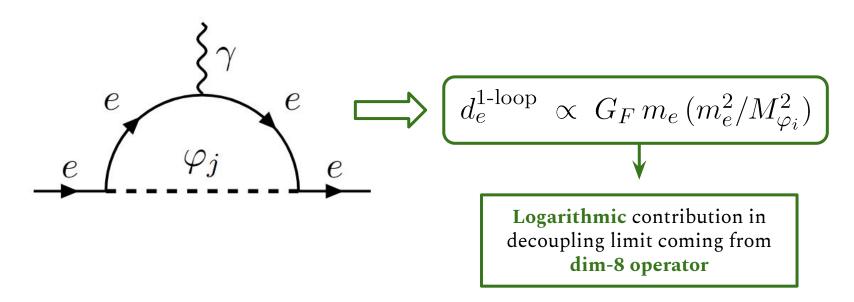


Juan Manuel Dávila Illán (IFIC)

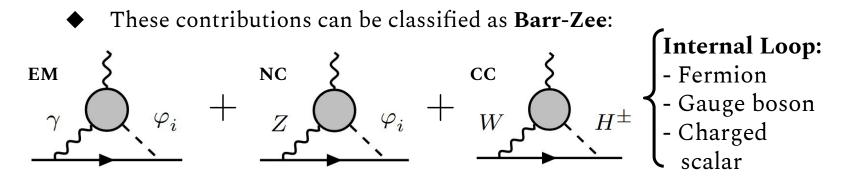
In the A2HDM, the eEDM gets a contribution at 1-loop order:



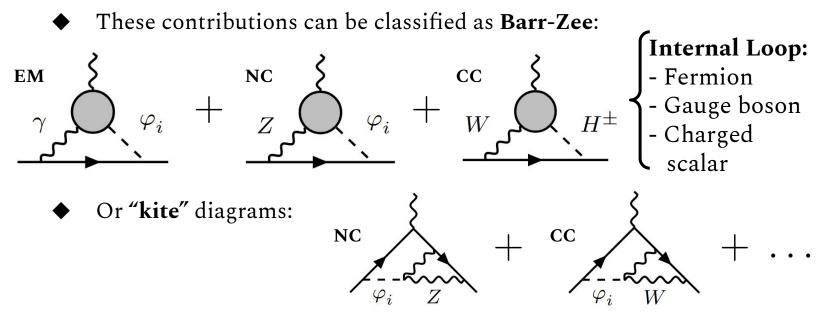
In the A2HDM, the eEDM gets a contribution at 1-loop order:



But actually, the **dominant** contributions come at **2-loop order**:

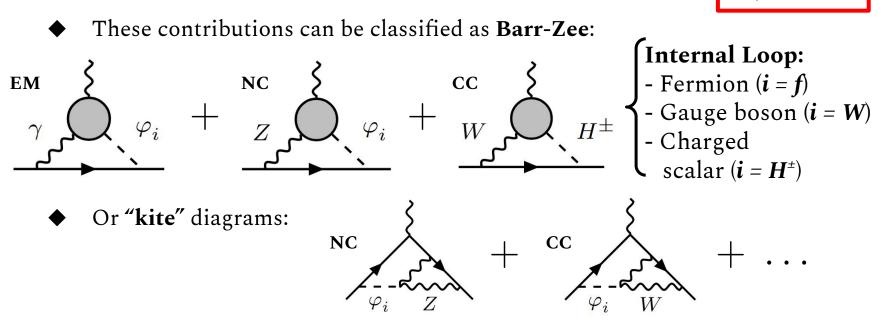


But actually, the **dominant** contributions come at **2-loop order**:



Juan Manuel Dávila Illán (IFIC)

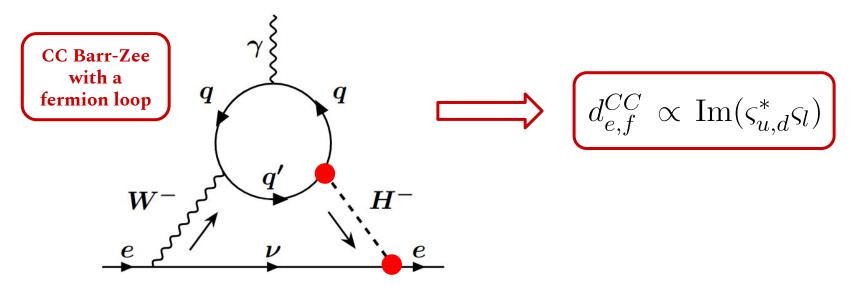
But actually, the **dominant** contributions come at **2-loop order**:



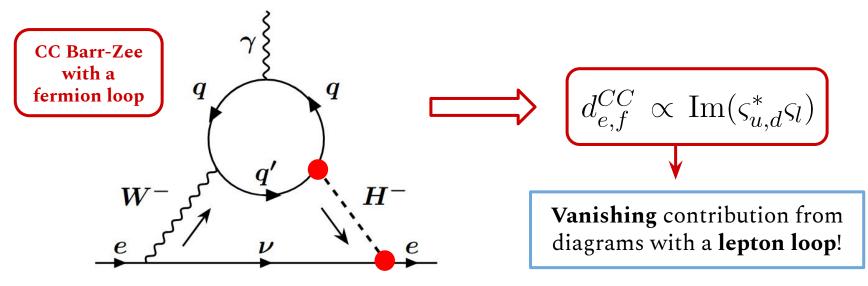
EPS 2025

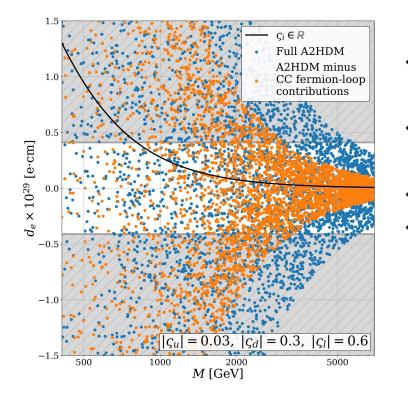
Notation:

Some of these contributions only arise when considering a **complex value** for the **g** parameters [Bowser-Chao, Chang, Keung '97; Jung, Pich '14; Altmannshofer et. al. '24]:



Some of these contributions only arise when considering a **complex value** for the **g** parameters [Bowser-Chao, Chang, Keung '97; Jung, Pich '14; Altmannshofer et. al. '24]:





- Black line: real alignment parameters
 S.
- Orange points: A2HDM minus CC Barr-Zee fermion-loop contributions.
- Blue points: full A2HDM.
- Destructive interference with complex g, → satisfy the experimental constraints (grey bands) with lower values for M.

If the mass parameter of the second doublet Φ_2 becomes very large compared to the vev of Φ_1 , we get the *decoupling limit* of the 2HDM:

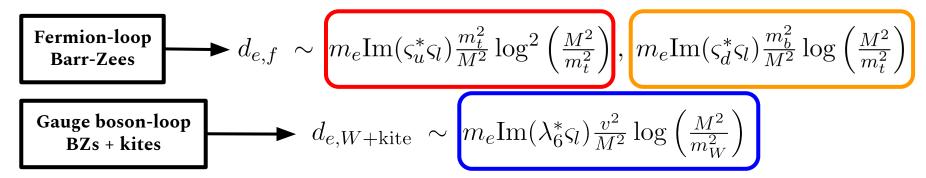
 $\sqrt{\mu_2} \gg v$

 If the masses of the scalars from the second doublet are assumed to be independent parameters, this condition means that they will be much heavier than the SM Higgs boson:

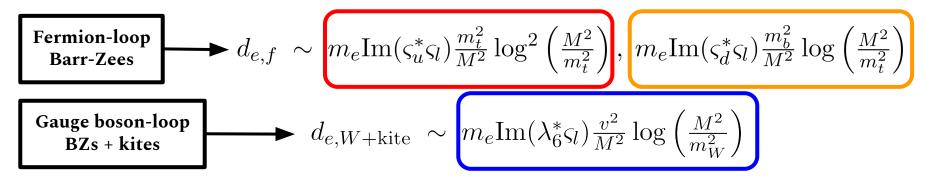
$$M_{H^{\pm}}, M_H, M_A \approx M \gg m_h$$

Working in the decoupling limit of the A2HDM, it is possible to isolate the dominant **logarithmic contributions** to the eEDM:

Working in the decoupling limit of the A2HDM, it is possible to isolate the dominant **logarithmic contributions** to the eEDM:



Working in the decoupling limit of the A2HDM, it is possible to isolate the dominant **logarithmic contributions** to the eEDM:



The logarithmic contributions from fermion-loop BZs are exclusive of the A2HDM: in Z₂-conserving 2HDMs they naturally vanish <u>[Altmannshofer, Gori, Hamer, Patel '20]</u>.

Juan Manuel Dávila Illán (IFIC)

The eEDM in the SMEFT

The decoupling limit also allows us to make an **Effective Field Theory** (EFT) description of the eEDM \rightarrow the heavy scalars can be integrated out and we can characterize new contributions by a set of **effective operators**.

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} C_{i}(\mu) Q_{i}.$

The eEDM in the SMEFT

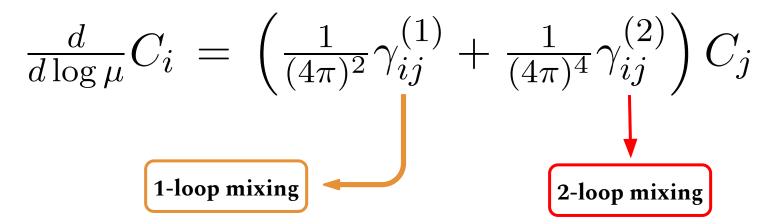
The decoupling limit also allows us to make an **Effective Field Theory** (EFT) description of the eEDM \rightarrow the heavy scalars can be integrated out and we can characterize new contributions by a set of **effective operators**:

• These operators will **run** from the NP scale down to the EW scale and **mix** with the **electromagnetic dipole operator**.

The effective **SMEFT** operators will mix with each other via the **Renormalization Group Equations** (RGEs):

$$\frac{d}{d\log\mu}C_i = \left(\frac{1}{(4\pi)^2}\gamma_{ij}^{(1)} + \frac{1}{(4\pi)^4}\gamma_{ij}^{(2)}\right)C_j$$

The effective **SMEFT** operators will mix with each other via the **Renormalization Group Equations** (RGEs):



The effective **SMEFT** operators will mix with each other via the **Renormalization Group Equations** (RGEs):

$$\frac{d}{d\log\mu}C_i = \left(\frac{1}{(4\pi)^2}\gamma_{ij}^{(1)} + \frac{1}{(4\pi)^4}\gamma_{ij}^{(2)}\right)C_j$$

Integrating these equations between the scale of new physics (*M*) and the EW scale we can compute logarithmic contributions to the eEDM, which can be compared to the leading contributions that we computed in the decoupling limit. [Panico, Pomarol, Riembau '18], [Vale Silva, Jäger, Leslie '20], [Altmannshofer et al. '20].

Outline of RGE mixing:

$$Q_{eH} = (H^{\dagger}H)(\bar{l}eH)$$

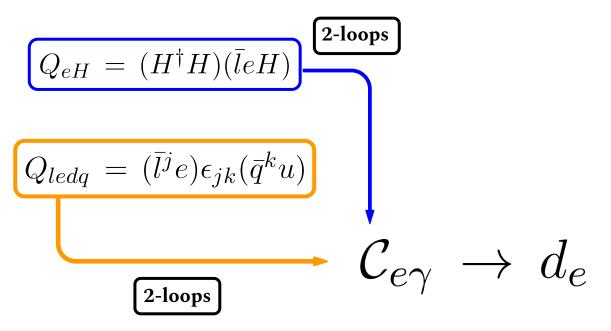
$$Q_{eH} = (H^{\dagger}H)(\bar{l}eH)$$

$$C_{e\gamma} \rightarrow d_{e}$$

$$d_{e,W+\text{kite}} \propto \frac{G_F m_e}{(4\pi)^4} \text{Im}(\lambda_6^* \varsigma_l) \frac{v^2}{M^2} \log\left(\frac{M^2}{m_W^2}\right)$$
$$\int d_{e,eH}^{\text{SMEFT}} \propto \frac{1}{(4\pi)^4} \text{Im}(C_{eH}) \log\left(\frac{M^2}{m_{EW}^2}\right)$$

Juan Manuel Dávila Illán (IFIC)

Outline of RGE mixing:

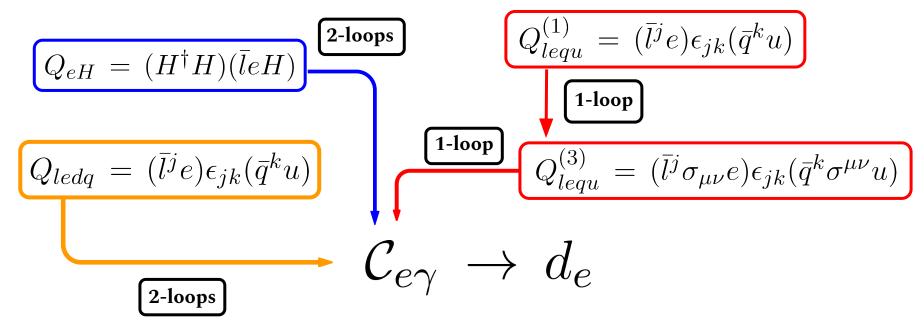


Juan Manuel Dávila Illán (IFIC)

$$d_{e,f} \propto \frac{G_F m_e}{(4\pi)^4} \operatorname{Im}(\varsigma_d^* \varsigma_l) \frac{m_b^2}{M^2} \log\left(\frac{M^2}{m_t^2}\right)$$
$$\int d_{e,ledq}^{\text{SMEFT}} \propto \frac{1}{(4\pi)^4} \operatorname{Im}(C_{ledq}) \log\left(\frac{M^2}{m_{EW}^2}\right)$$

Juan Manuel Dávila Illán (IFIC)

Outline of RGE mixing:

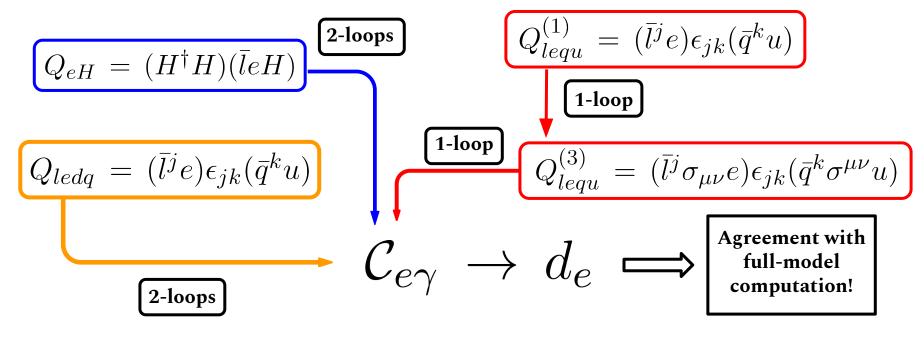


Juan Manuel Dávila Illán (IFIC)

$$d_{e,f} \propto \frac{G_F m_e}{(4\pi)^4} \operatorname{Im}(\varsigma_u^* \varsigma_l) \frac{m_t^2}{M^2} \log^2\left(\frac{M^2}{m_t^2}\right)$$
$$\int \\ d_{e,lequ}^{\text{SMEFT}} \propto \frac{1}{((4\pi)^2)^2} \operatorname{Im}(C_{lequ}) \log^2\left(\frac{M^2}{m_{EW}^2}\right)$$

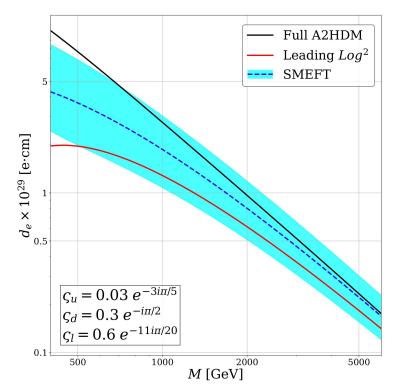
Juan Manuel Dávila Illán (IFIC)

Outline of RGE mixing:



Juan Manuel Dávila Illán (IFIC)

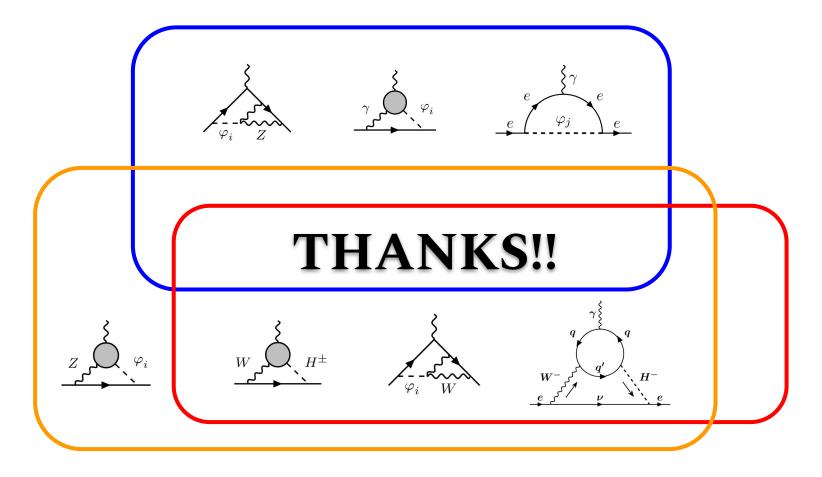
Full calculation vs. SMEFT



- Black line: full A2HDM
- Red line: only leading squared logarithm term → dominates close to the decoupling limit.
- Blue line: all the previously discussed SMEFT logarithms.
- Blue band: variation of the NP scale.

Summary

- ◆ EDMs → powerful probe of the amount of violation of CP symmetry in nature.
- ♦ Room for NP that contribute to CPV, such as an extended scalar sector →
 2HDMs
- The Aligned 2HDM contains additional complex phases that allow for new contributions to the electron-EDM which are absent in Z₂-symmetric 2HDMs, while still avoiding FCNCs.
- ◆ **Destructive interference** among contributions → satisfy experimental constraints with lower values for the scalar masses.
- Outlook → discussion of CP-violating electron-nucleon interaction.



BACKUP

Juan Manuel Dávila Illán (IFIC)

Flavour Alignment Parameters

Different models have different flavour alignment parameters:

- Model used in this (Minimal) Aligned 2HDM: $\zeta_i \in \mathbb{C}^3$, diagonal General 2HDM: $\zeta_i \in \mathbb{C}^3$, diagonal Matrices

 \mathbb{Z}_2 -conserving 2HDMs:

Type I:
$$\varsigma_u = \varsigma_d = \varsigma_l = \cot \beta$$
, Type II: $\varsigma_u = -\frac{1}{\varsigma_d} = -\frac{1}{\varsigma_l} = \cot \beta$, Inert: $\varsigma_u = \varsigma_d = \varsigma_l = 0$,
Type X: $\varsigma_u = \varsigma_d = -\frac{1}{\varsigma_l} = \cot \beta$ and Type Y: $\varsigma_u = -\frac{1}{\varsigma_d} = \varsigma_l = \cot \beta$.

(From [Karan, Miralles, Pich '23])

Juan Manuel Dávila Illán (IFIC)

Benchmark

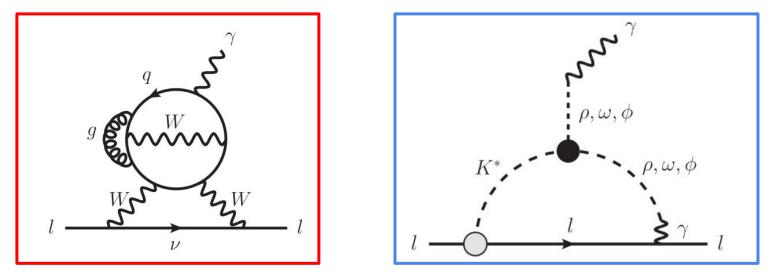
Parameter	Benchmark Value
λ_3	0.02
λ_4	0.04
λ ₇	0.03
$\operatorname{Re}(\lambda_5)$	0.05
$\operatorname{Re}(\lambda_6)$	-0.05
$Im(\lambda_6)$	0.01
<i>a</i> ₃	π/6

All benchmark values are consistent with the global fit performed in <u>[Karan,</u> <u>Miralles, Pich '23]</u>.

The value of the mass M corresponds to the mass of the charged scalar, which is related to the mass parameter μ_2 .

eEDM in the SM

4-loop SM contribution (CPV comes from CKM) Long-distance contribution



[Yamaguchi, Yamanaka '20]

Juan Manuel Dávila Illán (IFIC)

Electron-nucleon interaction

