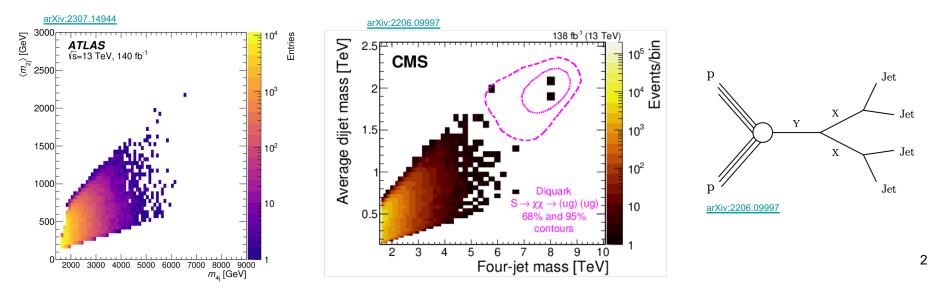


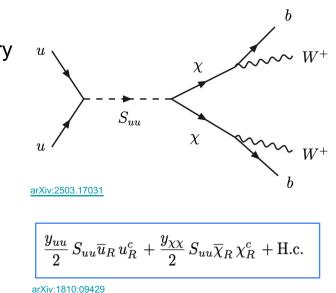
Diquark scalar production of a vectorlike quark pair at the LHC

I. Duminica^{1,2}, C. Alexa¹, I.-M. Dinu¹, B. Dobrescu³, M.-S. Filip^{1,2}, D.-C. Costache^{1,2}

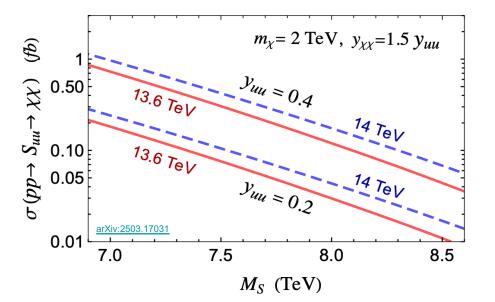

¹IFIN-HH, Romania ²University of Bucharest, Romania ³Fermilab, USA

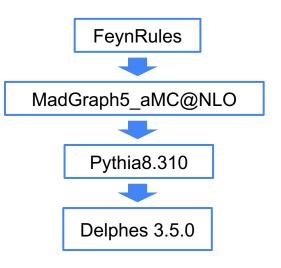
> EPS-HEP 2025 09.07.2025

based on Phys. Rev. D **111** (2025) 115025


Motivation for high-mass resonances studies

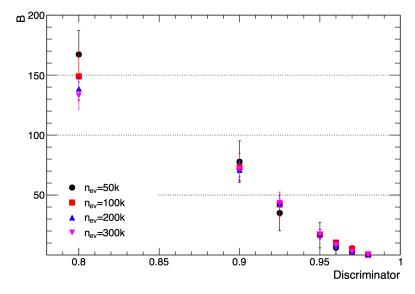
- Physics near the 10 TeV scale: composite Higgs (low mass vectorlike quarks), quarks and lepton compositeness, extended gauge symmetries, extra dimensions etc.
- Run 3 and HL-LHC increase the discovery potential for BSM physics, especially for ultraheavy particles testing the collider kinematic limitations.
- CMS: excess of events (3.9σ) with 4-jet masses around 8 TeV.


Theoretical framework


- The theoretical model (<u>arXiv:1810:09429</u>) includes two BSM particles: a diquark scalar S_{uu} with (6,1,+4/3) and vectorlike quarks χ with (3,1,+2/3).
- Diquarks are heavy particles, with masses in the TeV range, that couple to two quarks. We study the S_{uu} s-channel resonant production, with S_{uu} coupling to up quarks and VLQs.
- Parameter choices, such that the theory renormalizability is preserved:
 - $y_{uu} < 1$ and $y_{\chi\chi} < 1$
 - \circ m_{χ} = 2 TeV
 - $M_S \in [7, 8.5]$ TeV
 - $\circ \quad y_{\chi\chi}/y_{uu} = 1.5$
 - $y_{uu}BR(\chi \rightarrow W^+b) = 0.1, 0.2 \text{ with } BR(\chi \rightarrow W^+b) = 50\%$
 - BR($S_{uu} \rightarrow \chi \chi$) ~ 63%

Signal and background data samples

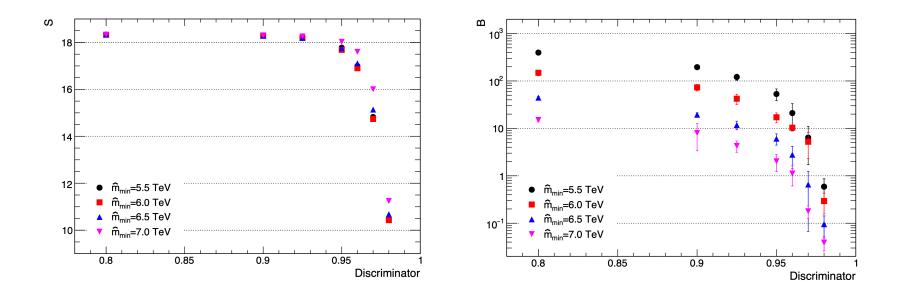
- We explore the W hadronic channel using the ATLAS detector parametrization at $\sqrt{s} = 13.6$ and 14 TeV (6-jet final state).
- Background (32 SM processes)
 - \circ 2 \rightarrow 2 QCD, W+jets, Higgs processes, dibosons, ttbar etc.
 - Phase space is restricted at generation level in Pythia8 ($\underline{mHatMin}$ ∈ [5.5, 8] TeV).



Data analysis

- Signal and background events are classified using a machine learning Random Forest (RF) algorithm.
- A multidimensional discriminator (D) is built by RF using 75 input variables: jet kinematics (p_T⁽ⁱ⁾, η⁽ⁱ⁾, φ⁽ⁱ⁾), dijet angular distance, jet multiplicity, 2-jet and 3-jet invariant masses etc.
- Each event is assigned a probability score (P = [0,1]). If P>D, then the event is classified as signal. However, if P≤D events are classified as background.
- A wide range of discriminator values is considered, with $D \in [0.2, 0.99]$.
- K-fold cross validation method is used to assess model performance.

Signal selection study (I)


- Number of signal events (S_{ev}) and background events (B_{ev}) are obtained at $\sqrt{s} = 13.6$, 14 TeV for $\mathcal{L} = 3000$ fb⁻¹, M_S= 7.5 TeV and \hat{m}_{min} = 6 TeV.
- RF method uncertainties for S_{ev} are below 0.1%.
- We explore the algorithm performance dependency on sample size.

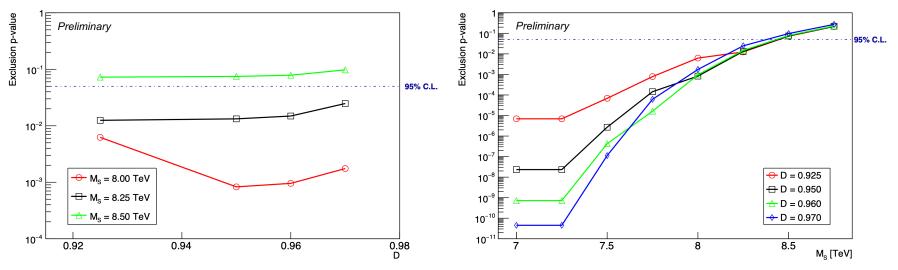
	D = 0.80	D = 0.90	D = 0.95	D = 0.96	D = 0.97					
	$\sqrt{s} = 13.6 \text{ TeV}$									
S_{ev}	18.3	18.3	17.7	16.9	14.7					
$B_{\rm ev}$	$149{\pm}21$	$73.1{\pm}11.4$	$17.2{\pm}4.0$	$10.4{\pm}0.6$	$5.2{\pm}2.9$					
$\sqrt{s} = 14 \text{ TeV}$										
S_{ev}	25.3	25.3	24.4	23.3	20.3					
$B_{\rm ev}$	209 ± 9	113 ± 5	$21.8{\pm}7.2$	$14.7{\pm}6.8$	$3.1{\pm}2.4$					

Signal selection study (II)

- S_{ev} and B_{ev} dependency on \hat{m}_{min} for $\sqrt{s} = 13.6$ TeV and $M_{s} = 7.5$ TeV.
- The best results are obtained for the highest phase space cut (smaller cross-sections).

Ultraheavy diquark scalar discovery potential

- The number of signal events (S_{ev}) for $y_{uu}BR(\chi \rightarrow W^+b) = 0.1, 0.2$ and the number of background events (B_{ev}) obtained for 4 diquark masses.
- Poisson statistics is used to compute the probability of the SM to have such a large fluctuation.

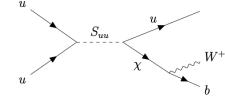

$$P(n|B_{ev}) = \frac{e^{-B_{ev}}B_{ev}^{n}}{n!}$$

• For $M_S = 8$ TeV and D = 0.96, with $n = S_{ev} + B_{ev}$, n \approx 7 expected events, we get $1.1 \cdot 10^{-7}$ p-value, corresponding to a significance of $\sim 5\sigma$ and can be considered a discovery.

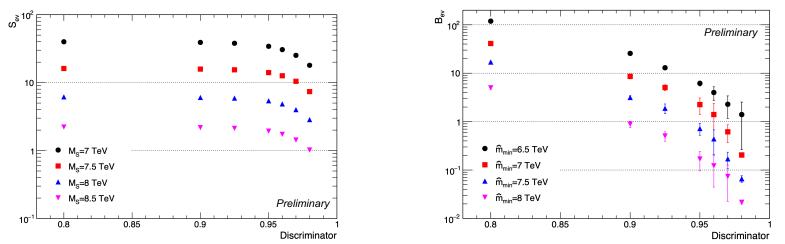
	D = 0.80	D = 0.90	D = 0.95	D = 0.96	D = 0.97				
$M_S = 7.0 \text{ TeV}$									
$S_{ m ev}(0.1)$	43.9	43.8	43.0	41.9	37.9				
$S_{ m ev}(0.2)$	197	196	193	188	170				
$B_{\mathbf{ev}}$	42.4	17.9	5.05	3.96	0.79				
		$M_S =$	$7.5 { m ~TeV}$						
$S_{ m ev}(0.1)$	18.3	18.3	18.0	17.6	16.0				
$S_{\rm ev}(0.2)$	81.9	81.8	80.5	78.6	71.5				
B_{ev}	15.0	8.00	2.03	1.12	0.18				
		$M_S =$	$8.0 { m TeV}$						
$S_{\rm ev}(0.1)$	7.20	7.20	7.10	6.95	6.35				
$S_{ m ev}(0.2)$	32.4	32.4	31.9	31.3	28.5				
$B_{\mathbf{ev}}$	5.34	5.34	0.67	0.36	0.09				
		$M_S =$	$8.5~{ m TeV}$						
$S_{ m ev}(0.1)$	2.63	2.63	2.59	2.54	2.33				
$S_{\rm ev}(0.2)$	11.8	11.8	11.6	11.4	10.5				
B_{ev}	1.72	1.72	0.17	0.09	0.02				

Ultraheavy diquark scalar exclusion limit

- The exclusion p-values dependency on discriminator and diquark scalar mass.
- The 95% CL is reached for $M_S \le 8.25$ TeV and $D \in [0.925, 0.97]$.
- For M_S > 8.25 TeV, cross-sections are significantly smaller. This theoretical model does not exclude M_S < 8.25 TeV diquark scalars.



Preliminary results in the $(u\chi)$ channel


• This theoretical framework also allows for a $S_{uu} \rightarrow u\chi$ decay (~14% BR), which may increase the sensitivity of S_{uu} searches.

$$\Gamma(S_{uu} \to u\chi) = \frac{M_S}{16\pi} \left| y_{u\chi} \right|^2 \left(1 - \frac{{m_\chi}^2}{{M_S}^2} \right)^2$$

https://arxiv.org/pdf/1912.13155

• For $M_S = 8$ TeV and D = 0.96, with ~5.4 expected events, we get $8.9 \cdot 10^{-5}$ p-value with a corresponding significance of ~4 σ – promising preliminary result.

Conclusions

- We explored the observation potential of an ultraheavy diquark scalar S_{uu} (with 7 to 8.5 TeV mass) at the LHC experiments. We analysed a more standard decay of $\chi \rightarrow (W^+b)$ which leads to a 6-jet final state.
- A Random Forest algorithm is employed in the signal selection study of the process $pp \rightarrow S_{uu} \rightarrow \chi \chi \rightarrow (W^+b)(W^+b) \rightarrow (jjb)(jjb)$.
- Our study indicates that for this 6-jet channel, with a 3000 fb⁻¹ LHC integrated luminosity, ATLAS and/or CMS searches may discover or rule out a diquark scalar of mass near 8 TeV.
- The sensitivity of this study may be improved by looking into other diquark scalar decays (S_{uu}→uχ) or even other vectorlike quarks decay modes (Zt, h⁰t).