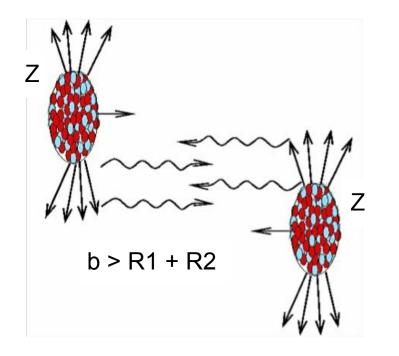

Measuring photon-induced tau-lepton pair production with ATLAS

Lydia Beresford on behalf of the ATLAS collaboration EPS-HEP, 8th July 2025



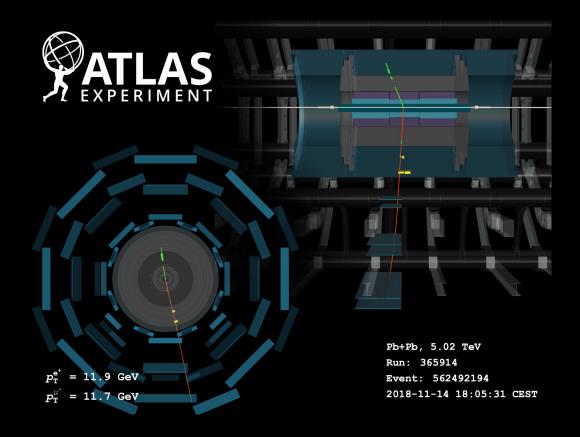
LHC as a photon collider

LHC heavy ions are charged so surrounded by EM fields

 \rightarrow Cloud of quasi-real photons

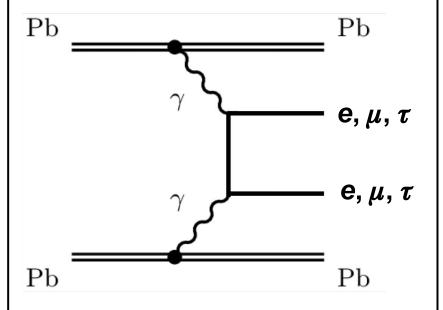
Ultra-peripheral collision (UPC): impact parameter > 2 x ion radius (b > R1+R2)

Photon-collisions in UPC Pb+Pb:


- Z⁴ cross-section enhancement (Z=82)
- Low trigger thresholds \rightarrow Access unique phase space wrt protons
- Super clean with ~0 pile-up

LHC heavy ion collisions

Head-on Pb+Pb collision


Ultra-peripheral Pb+Pb collision

Overview

ATLAS has measured differential cross-sections for a range of UPC processes in $\sqrt{s_{NN}} = 5.02$ TeV Pb+Pb collisions:

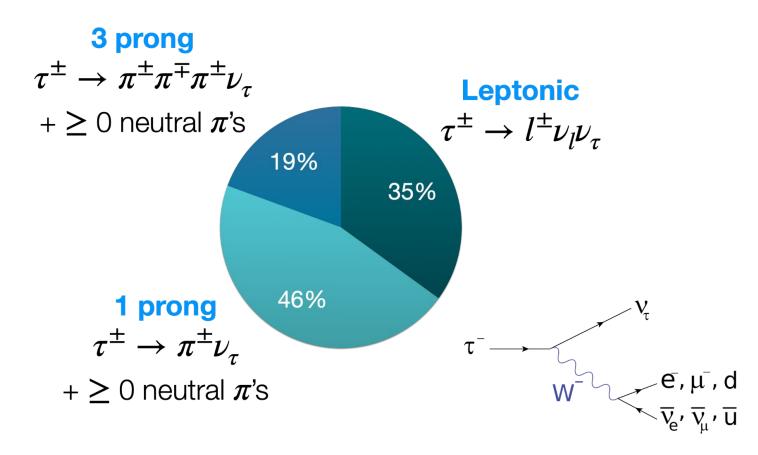
Today:1st differential $\gamma\gamma \rightarrow \tau\tau$ cross-section measurements in Pb+Pb at LHC

ATLAS-CONF-2025-004

From observation to measurement

Use 1.93 nb⁻¹ ATLAS Pb+Pb Run 2 data set (2015+2018), √s_{NN} = 5.02 TeV

Two-photon luminosity: Depends on photon-flux & survival factor **Total cross-section:** $\sigma(A_1A_2 \xrightarrow{\gamma\gamma} A_1A_2 + X) = \int dk_1 dk_2 \ \frac{d^2 N_{\gamma\gamma}}{dk_1 dk_2} \ \hat{\sigma}_{\gamma\gamma \to X}$


$\begin{array}{c} Pb \\ \hline \gamma \\ \hline \tau \\ \hline \tau \\ Pb \end{array} \end{array} \begin{array}{c} r \\ Pb \end{array}$

Hard scattering:

Sensitive to tau-lepton anomalous electromagnetic moments, spin correlations, tau-lepton decay modelling etc

Tau decays

The only lepton heavy enough to decay to hadrons

 $\gamma\gamma \rightarrow \tau\tau$ MC: Starlight + Tauola (Pythia 8 & Photos for QED FSR),

Photon flux re-weighted to SuperChic 3

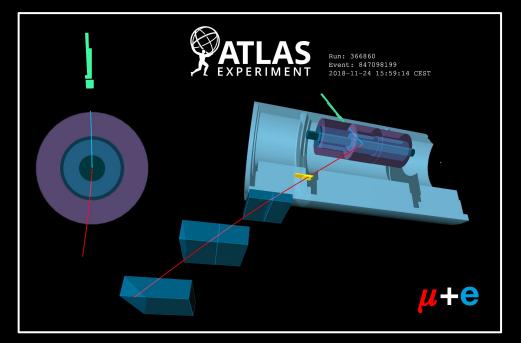
Signature

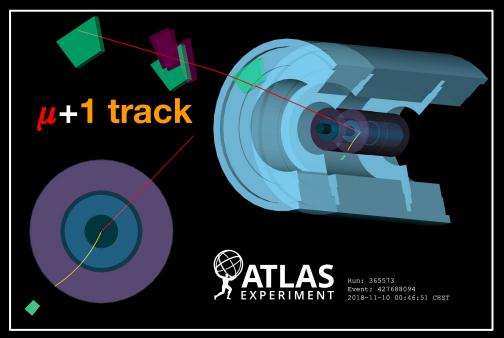
Low momentum taus (up to a few 10s GeV)

Below ATLAS hadronic tau reconstruction threshold

Use leptons: $p_T(e/\mu) > 4$ GeV & tracks: $p_T(trk) > 100$ MeV

Signal Regions (SRs)

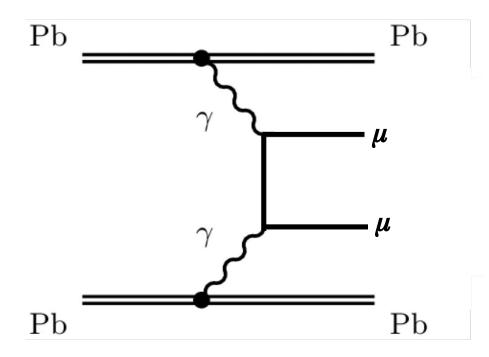

 $\mu + \Theta$


 μ +**1 track** (from lepton or hadron)

 μ +**3 track** (from 3-prong τ decay)

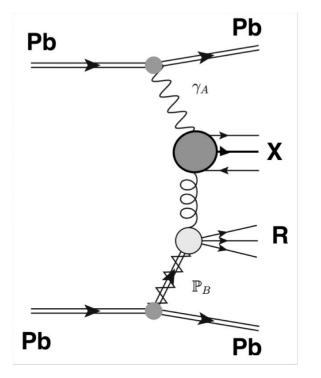
 $\leftarrow \frac{\text{Trigger on muon}}{p_{T} > 4 \text{ GeV}}$

Signal candidates



Main backgrounds

 $\gamma\gamma \rightarrow \mu\mu(\gamma)$



Estimate with MC

 $\gamma\gamma \rightarrow \mu\mu$ Starlight + Pythia8 $\gamma\gamma \rightarrow \mu\mu\gamma$ Madgraph 5

DESY. Photon flux re-weighted to SuperChic 3

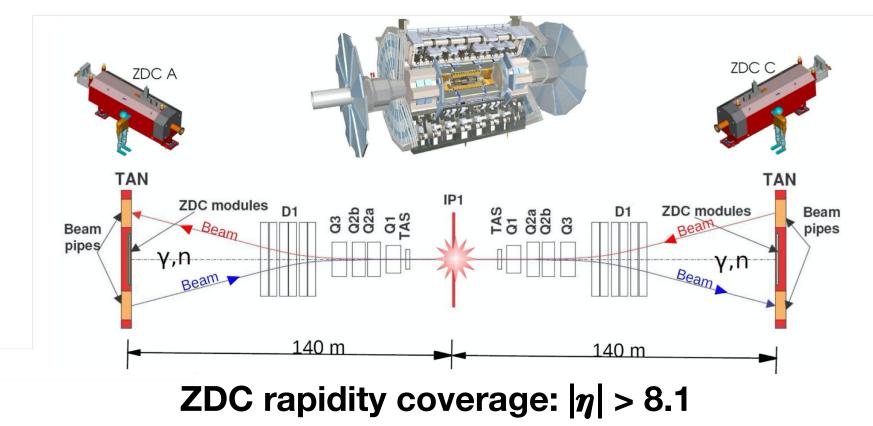
Diffractive photo-nuclear

Data-driven estimate

Often leads to nuclear breakup

 \rightarrow Forward neutrons

Rejecting background: $\gamma\gamma \rightarrow \mu\mu(\gamma)$

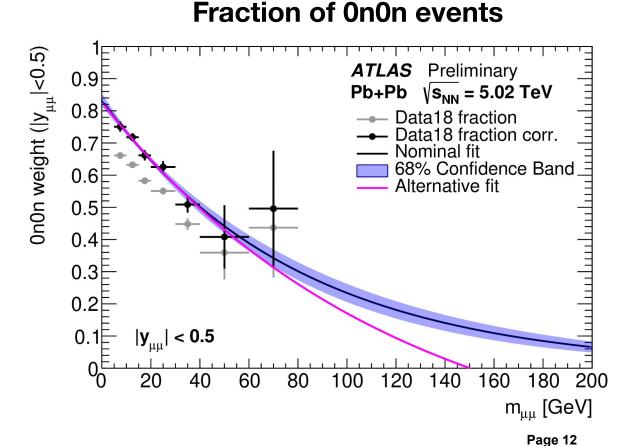

Exactly $\mu + e \text{ or } \mu + 1 \text{ or } 3 \text{ tracks separated from } \mu$

For μ 1T-SR: Reject Reject $\gamma\gamma \rightarrow \mu\mu + \gamma$ $\gamma\gamma \rightarrow \mu\mu$ $p_{\tau}(\mu, trk, \gamma/cluster) > 1 \text{ GeV}$ $p_{\tau}(\mu, trk) > 1 \text{ GeV}$

 $E_T(\gamma) > 1.5 \text{ GeV}; p_T(\text{cluster}) > 1 \text{ GeV} (|\eta| < 2.5), 100 \text{ MeV} (2.5 < |\eta| < 4.5)$

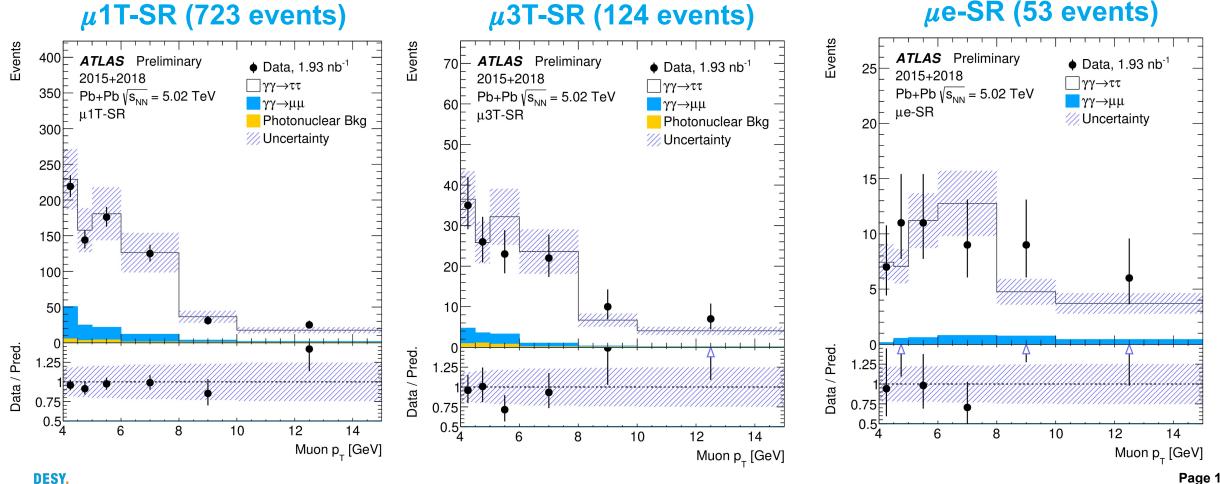
Rejecting background: Photo-nuclear etc

- Zero Degree Calorimeter Energy E_{7DC} < 1 TeV on side A & C (0n0n)
- No unmatched clusters i.e. not near μ or track(s), for μ +track(s) SRs
- m(trks) < 1.7 GeV for μ 3T-SR


OnOn weights

Data: ZDC selection applied

MC: Inclusive in forward neutrons & ZDC response not simulated in MC


 \rightarrow Apply data-driven 0n0n weights to MC

- Derive data-driven weights using $\gamma\gamma \rightarrow \mu\mu$ in di-muon mass & rapidity bins
- Correct weights for EM pileup in ZDCs
- Fit falling functions

Signal region summary: muon p_{τ}

Overall good data-MC agreement and minimal backgrounds

Fiducial definitions for cross-sections

Similar to object & signal region selections at reconstructed level

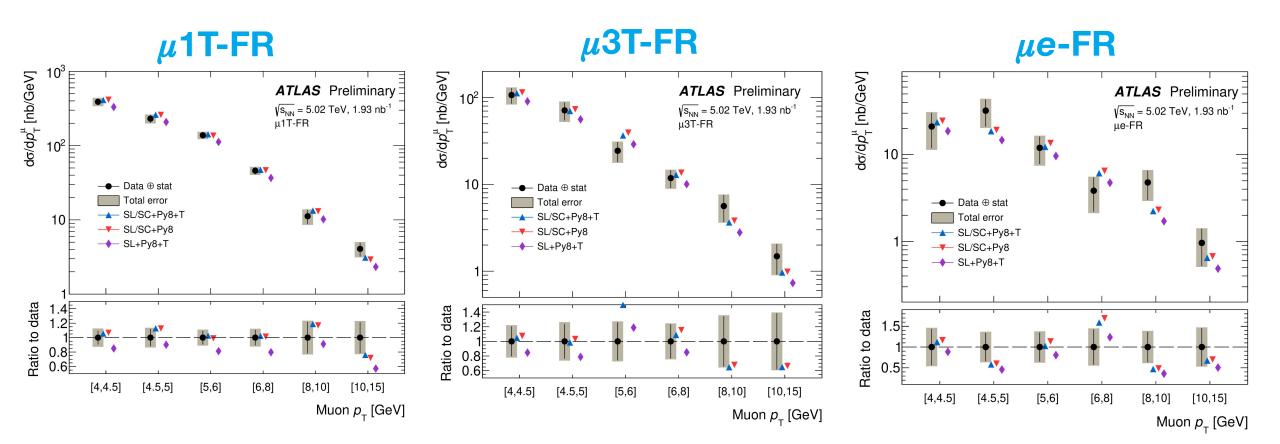
Object selections

Fiducial Regions (FRs)

Object	Requirements
Leptons (e,μ)	$p_{\rm T}>4~{\rm GeV}$ and $ \eta <2.5$
Hadrons	$p_{\mathrm{T}} > 100 \text{ MeV} \text{ and } \eta < 2.5$
Low- $p_{\rm T}$ Leptons $(e_{\rm low}, \mu_{\rm low})$	$100~{\rm MeV} < p_{\rm T} < 4~{\rm GeV}$ and $ \eta < 2.5$
Track particles (t)	Hadron or low- $p_{\rm T}$ lepton

Region	$\mu 1 \mathrm{T} ext{-}\mathrm{FR}$	$\mu 3$ T-FR	μe -FR	
0n0n topology	0n0n weights for MC			
N_{μ}	= 1	=1	= 1	
N_e	= 0	= 0	= 1	
$N_t(\Delta R > 0.1 \text{ from } \mu \text{ or e})$	= 1	=3	= 0	
$\Sigma_{\mu,t(s) \text{ or } e}$ charge	= 0	= 0	= 0	
$\Sigma_{\mu,t(s) \text{ or } e} \text{ charge} \ p_{\mathrm{T}}^{\mu,t}$	$> 1 { m ~GeV}$			
m_{3t}		$< 1.7 { m ~GeV}$		
$A^{\mu,t(s)}_{\phi}$	< 0.4	< 0.2	<u>(1</u>	

Measured variables


Measure following variables in each fiducial region to access $\tau\tau$ kinematics

Variable	$\mu 1 \text{T-FR}$	$\mu 3$ T-FR	$\mu \text{e-FR}$
Muon $p_{\rm T}$	$p^{\mu}_{ m T}$	$p^{\mu}_{ m T}$	$p^{\mu}_{ m T}$
$\text{Track}(s)/\text{Electron } p_{T}$	$p_{\mathrm{T}}^{\mathrm{trk}}$	$p_{\mathrm{T}}(\mathbf{p}_{\mathrm{trks}})$	$p^e_{ m T}$
$p_{ m T}\left(\mu,{ m trk}({ m s})/e ight)$	$p_{\mathrm{T}}(\mathbf{p}_{\mu}+\mathbf{p}_{\mathrm{trk}})$	$p_{\mathrm{T}}(\mathbf{p}_{\mu}+\mathbf{p}_{\mathrm{trks}})$	$p_{\mathrm{T}}(\mathbf{p}_{\mu}+\mathbf{p}_{e})$
$m(\mu, \mathrm{trk}(\mathrm{s})/e)$	$m({f p}_\mu+{f p}_{ m trk})$	$m(\mathbf{p}_{\mu}+\mathbf{p}_{\mathrm{trks}})$	$m(\mathbf{p}_{\mu}+\mathbf{p}_{e})$
$\eta(\mu, \mathrm{trk}(\mathrm{s})/e)$	$\eta({f p}_\mu+{f p}_{ m trk})$	$\eta({f p}_\mu+{f p}_{ m trks})$	$\eta({f p}_\mu+{f p}_e)$
$\Delta\eta \left(\mu, \mathrm{trk}(\mathrm{s})/e ight)$	$\eta_{\mu} - \eta_{ m trk}$	$\eta_{\mu} - \eta(\mathbf{p}_{\mathrm{trks}})$	$\eta_{\mu} - \eta_{e}$
$A^{\mu,\mathrm{trk}(\mathrm{s})/e}_{\phi}$	$1-\left \phi_{\mu}-\phi_{ ext{trk}} ight /\pi$	$1 - \left \phi_{\mu} - \phi(\mathbf{p}_{\mathrm{trks}}) ight / \pi$	$1-\left \phi_{\mu}-\phi_{e} ight /\pi$

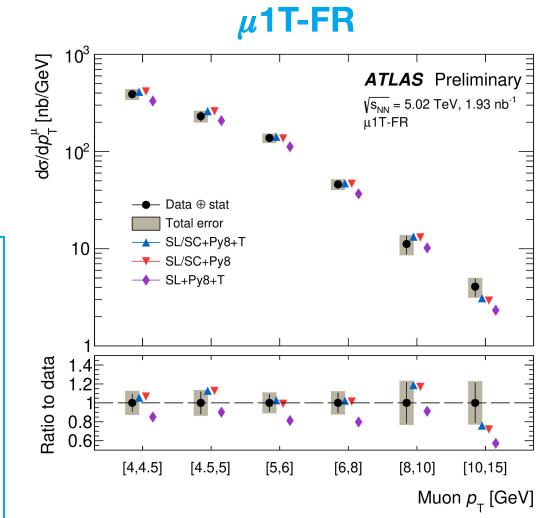
21 differential cross-sections

Unfold using Bayesian iterative unfolding & bootstrap method for stat correlations

Differential cross-section: muon p₋

Statistically limited ~10-50% stat uncertainty per bin Total systematic uncertainty ~5-10% per bin

Other variables in backup

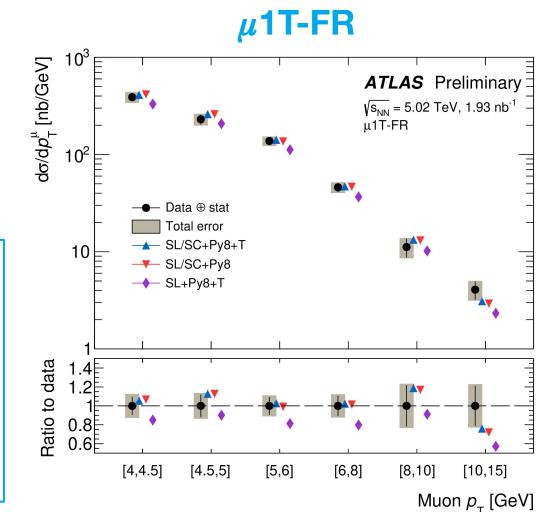

Differential cross-section: muon p_{τ}

Compare to:

- STARlight (SuperChic photon-flux) + Pythia8 + Tauola
- STARlight (SuperChic photon-flux) + Pythia8
- STARlight + Pythia8 + Tauola

Photon-flux depends on nuclear charge distribution

- STARlight: Point charge with cutoff in impact parameter integration (at b~R_{Pb})
- **SuperChic:** Woods-Saxon with no cutoff

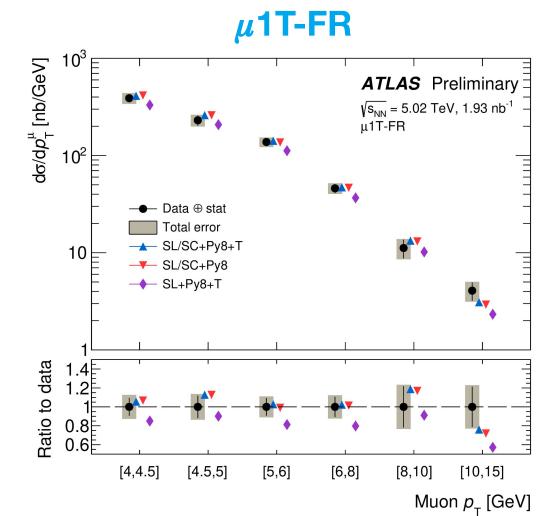

Observations

Compare to:

- ▲ STARlight (SuperChic photon-flux) + Pythia8 + Tauola
- STARlight (SuperChic photon-flux) + Pythia8
- STARlight + Pythia8 + Tauola

SuperChic photon flux **A** agrees better than STARlight photon flux •

- ~20% difference due to STARlight cutoff in impact parameter integration (at b~R_{Ph})
- Observed also in $\gamma\gamma \rightarrow ee/\mu\mu$

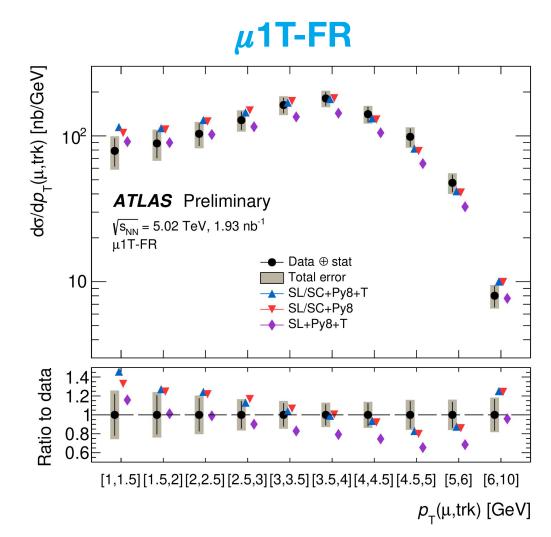


Observations

Compare to:

- STARlight (SuperChic photon-flux) + Pythia8 + Tauola
- STARlight (SuperChic photon-flux) + Pythia8
- STARlight + Pythia8 + Tauola

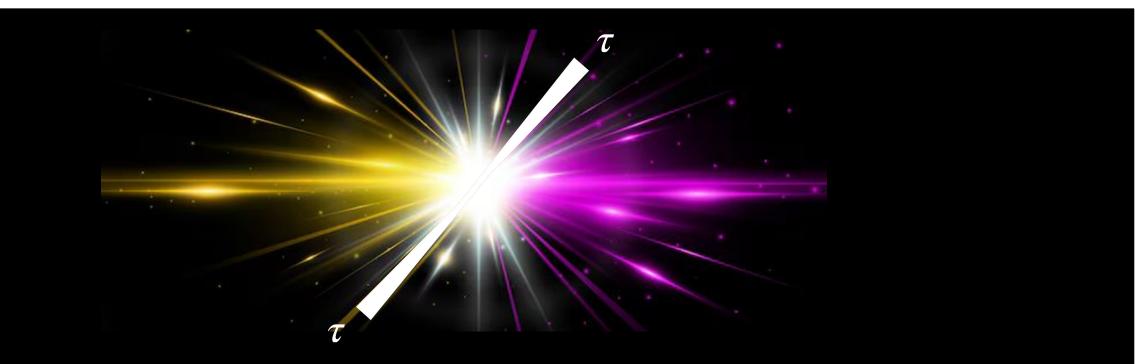
Tauola vs Pythia8 Tau lepton decays agree to within percent-level differences


Observations

Compare to:

- STARlight (SuperChic photon-flux) + Pythia8 + Tauola
- STARlight (SuperChic photon-flux) + Pythia8
- STARlight + Pythia8 + Tauola

Some systematic data-MC deviations e.g. $p_T(\mu, trk)$


- Potentially due to (transverse) spin correlations
- Included for $\gamma\gamma \rightarrow \tau\tau$ in latest Tauola & TauSpinner release <u>PRD.109.013002</u>

Summary

ATLAS-CONF-2025-004

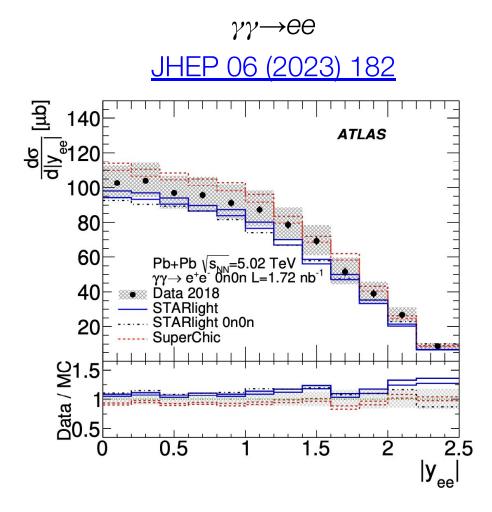
- First differential cross-section measurements of $\gamma\gamma \rightarrow \tau\tau$ in UPC Pb+Pb
- Measured 21 differential cross-sections: 7 variables in 3 Fiducial Regions
- Sensitive to spin correlation effects and electromagnetic moments

Backup

Signal region definitions

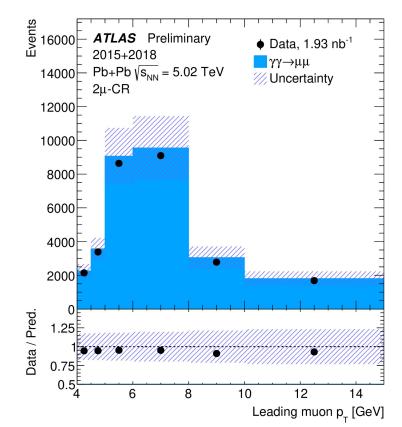
Region	$\mu 1$ T-SR	$\mu 3$ T-SR	μe -SR
Trigger $0n0n$ topology	Single-muc $E_{\rm ZDC}^{A,C} < 1$		0n0n weights for MC
$N^{ m baseline}_{\mu} N^{ m sig}_{\mu}$	= 1 = 1	= 1 = 1	=1
$N_e^{ m sig}$ $N_{ m trk}(\Delta R > 0.1 \text{ from } \mu^{ m sig})$	= 0 = 1	= 0 = 3	= 1
$N_{ m trk}(\Delta R > 0.1 \text{ from } \ell^{ m sig})$ $N_{ m clust}^{ m unmatched}$	= 0	= 0	= 0
$\sum_{i} q_{i} \text{ with } i = \mu, \text{trk}(s)/e$ $p_{T}^{(\mu, \text{trk})}$	= 0 > 1 GeV	= 0	= 0
$p_{\mathrm{T}}^{(\mu,\mathrm{trk},\gamma)} onumber \ p_{\mathrm{T}}^{(\mu,\mathrm{trk},\mathrm{cluster})}$	> 1 GeV > 1 GeV		
$m_{ m trks} \ A^{\mu, { m trk}({ m s})}_{\phi}$	< 0.4	$< 1.7 { m ~GeV} \\ < 0.2$	

Yields

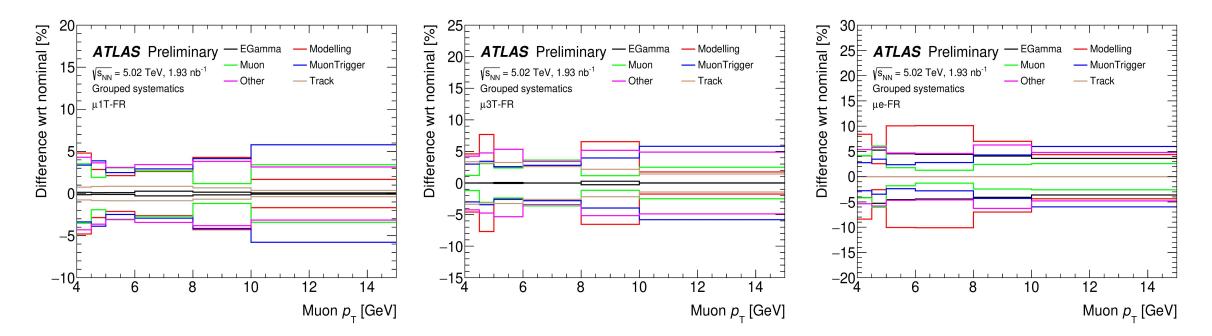

Region	$\mu 1 \text{T-SR}$	$\mu 3$ T-SR	μe -SR
background Photonuclear background	99.3 ± 18.9 15.6 ± 11.4	9.9 ± 2.0 3.2 ± 2.1	3.4 ± 0.9
Combined background	114.9 ± 22.0	13.1 ± 2.9	3.4 ± 0.9
Combined signal+background	750.4 ± 151.0	129.5 ± 26.8	47.5 ± 10.8
Data	723	124	53

Other backgrounds deemed negligible:

Using MC: $\gamma\gamma \rightarrow ee(\gamma)$, $\gamma\gamma \rightarrow dijets$, Non-diffractive photo-nuclear processes Using data-driven estimate: Simultaneous rho production due to multiple UPC scattering


Photon-flux weights

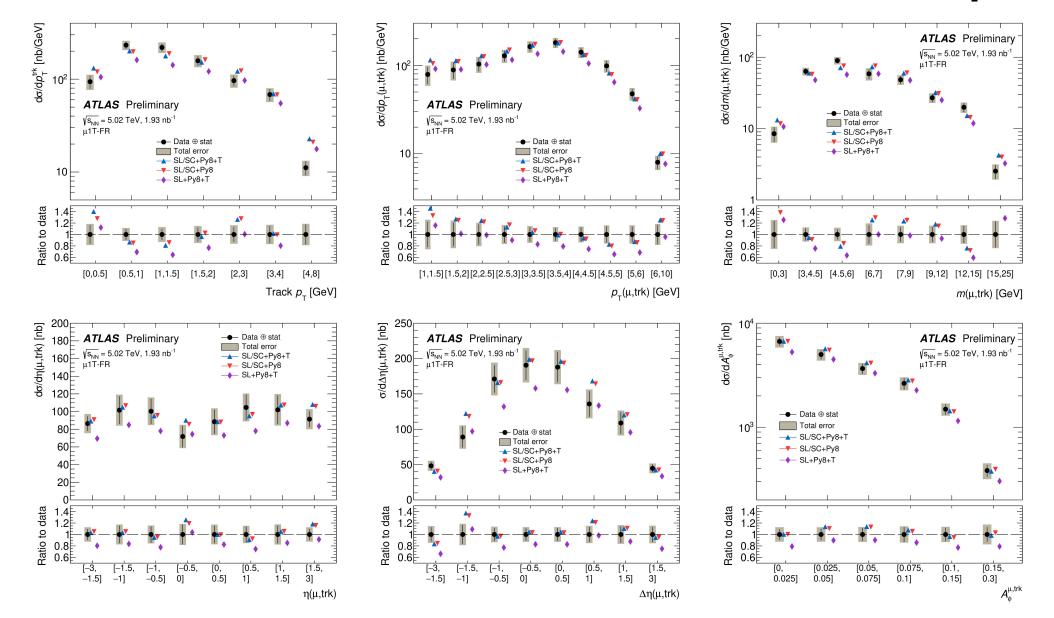
Apply photon-flux re-weighting to SuperChic differentially in truth y₁ and m₁


 $\gamma\gamma \rightarrow \mu\mu$ CR after re-weighting

ATLAS-CONF-2025-004

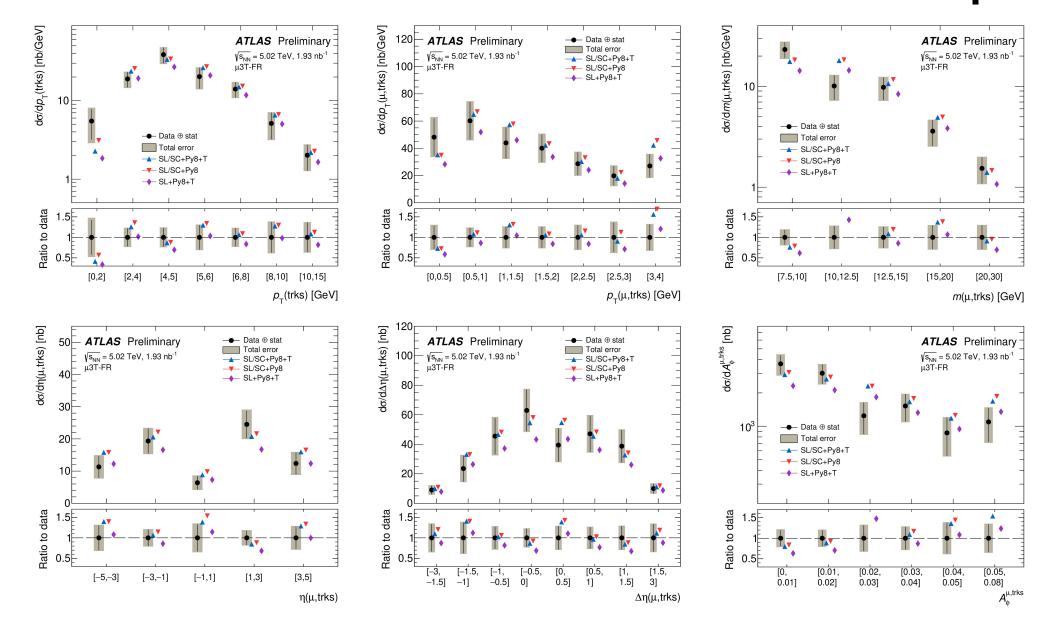
Systematic uncertainties

Largest individual sources: trigger scale factors, tau decay modelling

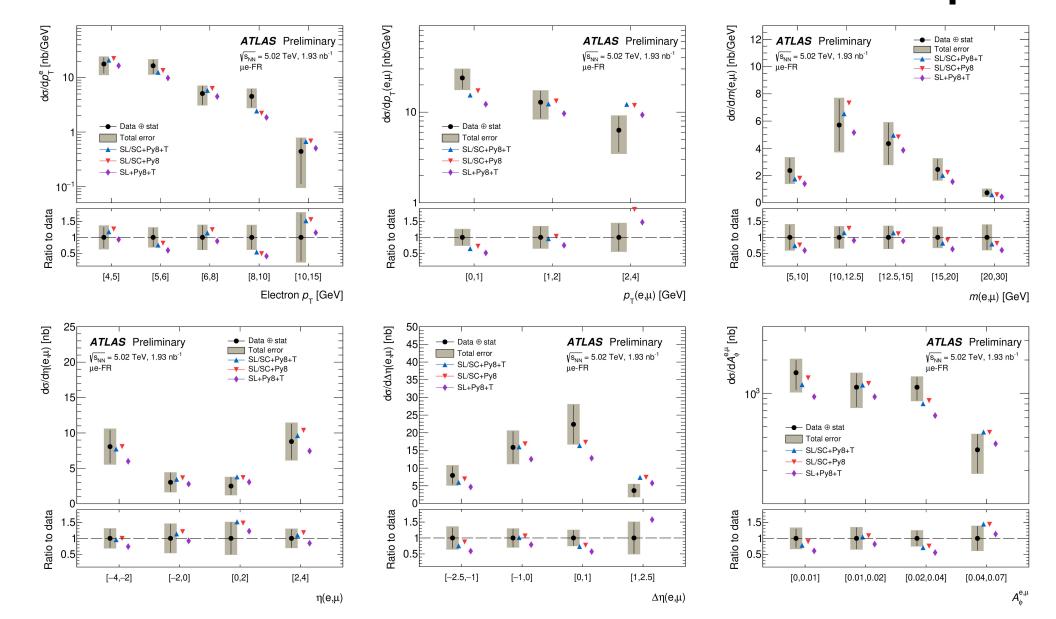


EGamma, Muon: Calibration & performance Track: Reconstruction efficiency MuonTrigger: Trigger scale factors **Other**: Luminosity, unfolding closure, background subtraction, MC statistics

Modelling: 0n0n weights alternative fits, Photon flux STARLight vs SuperChic, Tau decay Pythia8 vs Tauola


μ 1T-FR cross-sections (except muon p_T)

DESY.



μ 3T-FR cross-sections (except muon p_T)

DESY.

μe -FR cross-sections (except muon p_{T})

