

Probing bottom quark mass effects in jet substructure with CMS

using a novel technique to cluster the b hadron decays

CMS-PAS-HIN-24-005

Lida Kalipoliti (she/her) on behalf of the CMS collaboration *LLR, École Polytechnique*

EPS-HEP 2025, Marseille, 7 July 2025

Jet evolution

7 July 2025

2

Jet evolution

7 July 2025

3

Jet evolution in medium

Jet quenching

Centrality (nuclear overlap) 0-10% 10-30% 30-50% 50-90%

Lida Kalipoliti | LLR - École Polytechnique

7 July 2025

Jet quenching

Energy loss mechanisms

7 July 2025

7

Energy loss mechanisms

<u>JHEP 2011 (2011) 15</u> PLB 707 (2012) 156

Energy loss mechanisms Coherent Incoherent VS aka unresolved aka resolved color charges color charges Radiative Elastic VS $\theta < \theta_{c}$ $\theta > \theta_{c}$ PRI 106 (20) How to disentangle these mechanisms? JHEP Look at the jet substructure ! PLB 707 (2012) 156

7 July 2025

9

Heavy flavor jets

Mass dependent shower

$$P_{Q \to Qg}(z) = \frac{1-z}{z} + \frac{z}{2} - 2\mu_{Qg}^2$$

$$\mu_{Qg}^2 = \frac{m_Q^2}{m_{Qg}^2 - m_Q^2}$$

Suppression of collinear radiation (dead cone) $d\mathcal{P}(\theta) \propto \frac{d\theta^2}{(\theta^2 + \theta_0^2)^2}$ $\theta_0 = m_Q/E_Q$

Heavy flavor jets

Mass dependent shower $P_{Q \to Qg}(z) = \frac{1-z}{z} + \frac{z}{2} - 2\mu_{Qg}^2$ $\mu_{Qg}^2 = \frac{m_Q^2}{m_{Qg}^2 - m_Q^2}$ Suppression of collinear radiation (dead cone) $d\mathcal{P}(\theta) \propto \frac{d\theta^2}{(\theta^2 + \theta_0^2)^2}$ $\theta_0 = m_Q / E_Q$

7 July 2025

11

Heavy flavor jets in medium

Observable definition

Soft drop grooming

Recluster

Observable definition

Remove soft, wide-angle radiation to access hard two-prong structure

 $k_{T} = p_{T,2}R_{q}$

Heavy flavor decay effects

Decay daughters do not follow angular ordering

Heavy flavor decay effects

Decay daughters do not follow angular ordering

Heavy flavor decay effects

Partial b hadron reconstruction

Identify the decay daughters in the jet and sum their four-momenta

Partial b hadron reconstruction

Identify the decay daughters in the jet and sum their four-momenta

Jet selection and corrections

b tagging

b jets selected with <u>ParticleNet</u> at very high purity working point

But...

Sample includes jets with more than one b hadron

Residual background subtraction

Fit the mass of the reconstructed b hadron with MC templates

Unfolding to the charged-particle level b jet + Tagging efficiency correction

CMS Preliminary

pp 301 pb⁻¹ (5.02 TeV)

Lida Kalipoliti | LLR - École Polytechnique

Lida Kalipoliti | LLR - École Polytechnique

The groomed momentum balance results

CMS Lida Kalipoliti | LLR - École Polytechnique

The groomed momentum balance results

Prospects in heavy ion collisions

Conclusion

Aim to study jet energy loss mechanisms via jet substructure

- Disentangle parton shower and decay kinematics
 - → Partial reconstruction of the b hadron
- Build a solid baseline in proton-proton collisions
 - → Observation of the b quark dead cone
- ··· Study medium-induced radiation inside dead cone
 - → In progress

Backup

Decay product identification

Binary classifier

- Gradient boosted decision tree
 - → Signal = charged decay products
 - → Background = charged particles from PV
- Inputs
 - → Track properties (eg. impact parameter)
 - → Associated SV properties (eg. flight distance)

Analysis workflow

Dataset and jet kinematics 5.02 TeV low PU pp collisions $100 < p_T^{jet} < 120 \text{ GeV}, |\eta^{jet}| < 2$

> **Soft drop parameters** $z_{cut} = 0.1, \beta = 0$

 $\Rightarrow p_{T,2} / (p_{T,1} + p_{T,2}) > 0.1$

1-prong (fail soft drop) or
k_T < 1 GeV (hadronization) in</p>
dedicated bin for unfolding

Observables

charged particle R_a, z_a

Agreement between the detector and the particle level

Impossible to "unfold" the decay effects

Multiple bin migrations to "decay angle"

The jet fragmentation function results

Systematic uncertainties

Both for inclusive and b jets

- Statistical uncertainty
- Matrix response statistical uncertainty (jackknife resampling)
- Shower and hadronization (unfolding with HERWIG7 CH3 vs PYTHIA8 CP5)
- ► FSR and ISR scale (x2 or x1/2 independently in PYTHIA8 CP5)
- Jet energy resolution (vary JER scale factors)
- Jet energy scale (vary JEC per source)
- Tracking efficiency (randomly discard 3% of reconstructed tracks in PYTHIA8 CP5)

Only for b jets

- **b jet fraction model dependence** (template fit with HERWIG7 CH3 vs PYTHIA8 CP5)
- Light and charm misidentification rate (vary light+c fraction in template fit)
- b tagging efficiency (vary b tagging efficiency scale factors)

Systematic uncertainties

Leading sources related to physics model and b tagging

- Shower and hadronization (unfolding with HERWIG7 CH3 vs PYTHIA8 CP5)
- ► FSR and ISR scale (x2 or x1/2 independently in PYTHIA8 CP5)
- b tagging efficiency (vary b tagging efficiency scale factors)

Lida Kalipoliti | LLR - École Polytechnique

Other substructure observables

PYTHIA8 HAD $e^+e^- \rightarrow b \bar{b}$ decaying hadrons PYTHIA8 HAD $e^+e^- \rightarrow b \bar{b}$ decaying hadrons 4.04.0 PYTHIA8 HAD $e^+e^- \rightarrow b \bar{b}$ stable hadrons PYTHIA8 HAD $e^+e^- \rightarrow b\,\bar{b}$ stable hadrons $(1/\sigma) \frac{d\sigma}{d\sigma} d\log_{10} e_2^{1/2}$ PYTHIA8 PS $e^+e^- \rightarrow b\bar{b}$ shower only PYTHIA8 PS $e^+e^- \rightarrow b\bar{b}$ shower only $(1/\sigma) d\sigma/d\log_{10} e_2^2$ $R = 0.4, \sqrt{s} = 200 \, \text{GeV}$ $R = 0.4, \sqrt{s} = 200 \, \text{GeV}$ $\Delta_{ij} \sim \theta_{ij}$ $\Delta_{ij} \sim \theta_{ij}$ 1.0 1.0 -2-1-3-4 -3-2 $\log_{10} e_2^2$ $\log_{10} e_2^{1/2}$

b hadron decay effect in energy-energy correlators

<u>Oleh Fedkevych, BOOST 2023</u>

