Charmonium production from small to large systems at LHCb

Lidia Carcedo Salgado^{1,2} on behalf of the LHCb collaboration

¹University of Alcalá (UAH) ²Galician Institute of High Energy Physics (IGFAE)

lidia.carcedo.salgado@cern.ch

INTRODUCTION

The LHCb detector

Lidia Carcedo Salgado

Lidia Carcedo Salgado

The LHCb detector Experimental setup

*** Beam colliding** systems:

Lidia Carcedo Salgado

5

Quarkonium production **)**GP

*** Beam colliding** systems:

Lidia Carcedo Salgado

State of matter at high temperatures and densities where quarks and gluons are no longer confined but exist as in a deconfined 'liquid-like' configuration (jet quenching, strangeness enhancement, collective flow phenomena, quarkonium suppression) Bound heavy quark pairs: $c\overline{c}$

charmonium and $b\overline{b}$ bottomonium

QUARK-GLUON PLASMA (QGP)

Quarkonium production QGP - Quarkonium production

*** Beam colliding** systems:

Lidia Carcedo Salgado

Quarkonium production QGP - Quarkonium production

*** Beam colliding** systems:

Lidia Carcedo Salgado

- At sufficiently high $\sqrt{s_{NN}}$, c and \overline{c} are abundantly produced (> 100 pairs at LHC)
- These *c* and \overline{c} quarks in the QGP can be recombined to form quarkonium states

C

Quarkonium production \Rightarrow CNM effects

*** Beam colliding** systems:

PbPb

Lidia Carcedo Salgado

Modifications to particle production and propagation in a nucleus due to the nucleus' presence, independent of QGP formation

COLD NUCLEAR MATTER (CNM)

Reference point for understanding how the QGP affects particle production

(nuclear shadowing, parton energy loss, Cronin effect)

Quarkonium production Small-systems

*** Beam colliding** systems:

Quarkonium production \Rightarrow From small to large systems

*** Beam colliding** systems:

Lidia Carcedo Salgado

BASE

CNM

QGP-like signatures have been observed in small collision systems at high multiplicity!

[Phys. Lett. B 765 (2017) 193] CMS 2017, pp, Collective flow [Nature Phys 13, 535–539 (2017)] ALICE 2017, pp, Strangeness enhancement

What about quarkonium suppression?

This motivates the study of quarkonium production as a function of multiplicity / centrality from small - medium - large systems

ð

Quarkonium production The co-mover model

*** Beam colliding** systems:

Lidia Carcedo Salgado

Co-mover interaction model

Quarkonium suppression is caused by final-state interactions with soft particles (co-movers) produced in the same collision

The $\psi(2S)$ is more suppressed than the J/ψ due to its larger size The suppression increases with the density of the medium

 $C\overline{C}$

EPS HEP 2025

BASE

CNM

Ø

Quarkonium production \Rightarrow Observable in *pp* and *pPb*

 $\sigma_{J/\psi}$

* As a function of multiplicity

Lidia Carcedo Salgado

More details in the backup

 $\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}} = \frac{N_{\psi(2S)}}{N_{J/\psi}} \times \frac{\varepsilon_{tot,J/\psi}}{\varepsilon_{tot,\psi(2S)}} \times \frac{\mathscr{B}_{J/\psi}}{\mathscr{B}_{\psi(2S)}}$ Efficiencies Yields

$\blacktriangleright N_{tracks}^{PV} \equiv$ number of VELO tracks used to reconstruct the PV **Primary Vertex**

Quarkonium production \Rightarrow Observable in *pp* and *p*Pb

Lidia Carcedo Salgado

More details in the backup

 \equiv number of VELO tracks used to reconstruct the PV Primary Vertex

Quarkonium production \Rightarrow Observable in *pp* and *p*Pb

Lidia Carcedo Salgado

More details in the backup

 $N_{tracks}^{PV} / < N_{tracks}^{PV} >_{NB}$ **Un-biased reference**

Quarkonium production Observable in PbPb

PROTON - PROTON

 \rightarrow \leftarrow \bigcirc

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs multiplicity in *pp* collisions at $\sqrt{s} = 13$ TeV

Lidia Carcedo Salgado

- * Normalised ratio of $\psi(2S)$ -to- J/ψ integrated over 2.0 < y < 4.5 and $0.3 < p_T < 20$ GeV/c versus non-dimensional multiplicity
- ✓ Non-prompt (from b-hadrons) ratio:
 - No dependence on multiplicity
- ✓ Prompt (from the PV) ratio:
 - Evident decrease with multiplicity
 - Agreement with co-mover predictions except at low multiplicities
- * Comparison with previous measurements shows compatibility between results (backup)

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs multiplicity in *p*Pb collisions $at \sqrt{s} = 8.16$ TeV

- ✓ Prompt ratio:
 - Decrease of ratio with multiplicity

Lidia Carcedo Salgado

No dependence on multiplicity

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs multiplicity in *p*Pb collisions at $\sqrt{s} = 8.16$ TeV

Lidia Carcedo Salgado

forward

<u>*p*Pb ratio</u> consistent with *pp* ratio Suggests that a similar environment is created in the final states of both systems, where the suppression is dominated by co-movers

backward

[<u>PRL 132 (2024) 042301</u>]

Pbp ratio compatible with **PbPb ratio** Suggests that a similar physical effect is present in both systems, where additional suppression mechanisms such as QGP could exist

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs centrality in PbPb collisions $\int s = 5.02 \,\mathrm{TeV}$

Lidia Carcedo Salgado

* Cross section ratio of $\psi(2S)$ -to- J/ψ as a function of the mean number of participating nucleons, $< N_{part} >$

* Comparison with other collision systems:

- ✓ This work's results show no dependency on $< N_{part} >$ [PRL 132 (2024) 042301]
- ✓ Agreement with ALICE PbPb result within uncertainties
- \checkmark Agreement with LHCb pp and pPb / Pbpresults ($< N_{part} > = 2$ and 8, respectively)

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs centrality in PbPb collisions at $\sqrt{s} = 5.02$ TeV

Lidia Carcedo Salgado

* Cross section ratio of $\psi(2S)$ -to- J/ψ as a function of the mean number of participating nucleons, $< N_{part} >$

* Comparison with theory predictions:

SHMc model underestimates data, although showing a flat trend SHMc assumes that *c* quarks are produced in the collision, conserved throughout the QGP, thermalised in the medium, and then hadronised at the phase boundary

TAMU model is in better agreement with data

TAMU is a transport model that respects detailed balance and simulates the gradual dissociation and regeneration of charmonia

RUN3OUTLOOK

2024								2025								2026																		
۱	A	Μ	J	J	A	S	0	Ν	D	J	F	Μ	A	Μ	J	J	A	S	0	Ν	D	J	F	Μ	A	Μ	J	J	А	S	0	Ν	D	

Run 3 outlook Solution Lead-lead sample

* LHCb has recorded an unprecedented sample of PbPb collisions ($\mathscr{L} \sim 0.43 \text{ nb}^{-1}$)!

* Down to a centrality never achieved before due to the power of the newly upgraded detectors * Increased luminosity might allow to observe more quarkonium states in PbPb

Lidia Carcedo Salgado

* Possibility to separate prompt and non-prompt production

Run 3 outlook Fixed target mode

* LHCb has a unique system called **SMOG** to inject noble gases allowing to operate in fixed-target mode

Lidia Carcedo Salgado

Run 3 outlook \Rightarrow The light ion run

* The light ion run started last week! Really important run for the heavy ion community!

at $\sqrt{s_{NN}} = 5.36$ TeV, respectively

Lidia Carcedo Salgado

OO, *NeNe* NeNe pO

Run 2

Run 3

 Dependence on multiplicity for prompt states consistent with co-movers. - Non-prompt don't show multiplicity dependence.

CONCLUSIONS

Upgraded LHCb detector allows to -

Stay tuned for future results!

In *p*Pb (forward) dependence on multiplicity compatible with *pp*. - In Pbp (backward) flat behaviour compatible with PbPb ALICE results.

- First forward rapidity measurement of prompt charmonium production! - Results compatible with other measurements. - Comparison with theory shows better agreement with TAMU transport model.

Further investigate quarkonium production in PbPb with higher precision, up to more central region and separating prompt/non-prompt.

Extend our knowledge to other collision systems thanks to the new SMOG2!

○ Thank you for your attention! ○

Backup

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs multiplicity in *pp* collisions at $\sqrt{s} = 13$ TeV

- * Fiducial region 2.0 < y < 4.5 and $0.3 < p_T < 20$ GeV/c (p_T, y) bin and multiplicity range:
 - $\frac{\mathrm{d}^2 \sigma}{\mathrm{d} y \mathrm{d} p_{\mathrm{T}}} = \frac{\mathcal{L} \times \epsilon_{\mathrm{tot}}}{\mathcal{L} \times \epsilon_{\mathrm{tot}}}$
- * Double-differential ratio of prompt or non-prompt production in a certain multiplicity range:
- * Ratio of production over an integrated kinematics:

$$\frac{\sum_{j} \sigma_{\psi(2S),j}}{\sum_{j} \sigma_{J/\psi,j}}$$

where *j* run over all (p_T , y) bins

Lidia Carcedo Salgado

* Double-differential cross-section for prompt and non-prompt J/ψ and $\psi(2S)$ production in a given

$$\frac{N(p_{\rm T}, y)}{P_{\rm t}(p_{\rm T}, y) \times \mathcal{B} \times \Delta y \times \Delta p_{\rm T}}$$

 $\frac{\sigma_{\psi(2S)}(p_{\mathrm{T}}, y)}{\sigma_{J/\psi}(p_{\mathrm{T}}, y)} = \frac{N_{\psi(2S)}(p_{\mathrm{T}}, y)}{N_{J/\psi}(p_{\mathrm{T}}, y)} \times \frac{\epsilon_{\mathrm{tot}, J/\psi}(p_{\mathrm{T}}, y)}{\epsilon_{\mathrm{tot}, \psi(2S)}(p_{\mathrm{T}}, y)} \times \frac{\mathcal{B}_{J/\psi \to \mu^{+}\mu^{-}}}{\mathcal{B}_{\psi(2S) \to e^{+}e^{-}}}$

* Normalised cross-section ratio:

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs multiplicity in *pp* collisions at $\sqrt{s} = 13$ TeV

* Production of $\psi(2S)$ is suppressed at low p_T ; almost independent of multiplicity at high p_T

Lidia Carcedo Salgado

[JHEP05(2024)243]

EPS HEP 2025

32

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs multiplicity in *p*Pb collisions at $\sqrt{s} = 8.16$ TeV

* Fiducial region: $1.5 < y^* < 4.0$ ($-5.0 < y^* < -2.5$) for pPb (Pbp) and $0.3 < p_T < 14$ GeV/c

* The cross-section ratio for a multiplicity bin i:

$$\frac{\sigma^{i}_{\psi(2S)}}{\sigma^{i}_{J/\psi}} = \frac{\mathcal{B}_{J/\psi \to \mu^{+}\mu^{-}}}{\mathcal{B}_{\psi(2S) \to \mu^{+}\mu^{-}}} \frac{Y^{i}_{\psi(2S)}}{Y^{i}_{J/\psi}}$$

Lidia Carcedo Salgado

¥	Multip	licity	bins:
---	--------	--------	-------

pPb	Pbp
$N_{ m tracks}^{ m PV}$	$N_{ m tracks}^{ m PV}$
4 - 45	4 - 60
45 - 70	60–90
70 - 90	90 - 120
90 - 120	120 - 160
120 - 270	160 - 330
4 - 270	4-330

$\sigma_{\psi(2S)}/\sigma_{J/\psi}$ vs centrality in PbPb collisions at $\sqrt{s} = 5.02$ TeV

* Centrality intervals (estimated using the total energy deposited in the ECAL), $< N_{part} >$, and signal yields:

Centrality $(\%)$	90 - 100	80–90	70 - 80	60–70
$\langle N_{\rm part} \rangle$	2.4 - 5.5	5.5 - 13.0	13.0 - 26.5	26.5 - 48.0
$N(J\!/\psi)$	596 ± 28	2099 ± 52	3320 ± 74	2221 ± 77
$N(\psi(2S))$	13 ± 5	53 ± 14	68 ± 26	85 ± 36

* Ratio of cross-sections multiplied by their branching fractions:

$$\frac{\mathcal{B}(\psi(2S) \to \mu^+ \mu^-)}{\mathcal{B}(J/\psi \to \mu^+ \mu^-)} \cdot \frac{\sigma(\psi(2S))}{\sigma(J/\psi)} = \frac{N(\psi(2S))}{N(J/\psi)} \cdot \frac{\varepsilon_{\text{tot}}(J/\psi)}{\varepsilon_{\text{tot}}(\psi(2S))}$$

Lidia Carcedo Salgado

Run 3 outlook Fixed target mode

* LHCb has a unique system called **SMOG** to inject noble gases allowing to operate in fixed-target mode

Lidia Carcedo Salgado

*** SMOG2 improvements** respect to SMOG:

- \times 100 more density that translates into a massive increase in luminosity
- ✓ Precise luminosity determination (<2%)</p> systematic uncertainty)
- Wider choice of target gases: $H_2, D_2, He, Ne, O_2, Ar$
- ✓ Clear separation between the beam-gas and nominal (beam-beam) interaction points that allows simultaneous data taking with same physics performance

