

Longitudinal polarization of hyperons in Run 3 Pb-Pb collisions with ALICE

CHIARA DE MARTIN (CERN) ON BEHALF OF THE ALICE COLLABORATION

The origin of longitudinal polarization

• The longitudinal spin polarization is the **degree to which a particle's spin is aligned with the beam axis**

S. Voloshin and T. Niida, Phys. Rev. C 94 (2016) 021901(R)

The origin of longitudinal polarization

- The longitudinal spin polarization is the **degree to which a particle's spin is aligned with the beam axis**
- In non-central heavy-ion collisions, the eccentricity in the initial state is converted to momentum anisotropy in the final state distributions of particles → the second-order coefficient of the Fourier expansion is referred to as elliptic flow

S. Voloshin and T. Niida, Phys. Rev. C 94 (2016) 021901(R)

The origin of longitudinal polarization

- The longitudinal spin polarization is the degree to which a particle's spin is aligned with the beam axis
- In non-central heavy-ion collisions, the eccentricity in the initial state is converted to momentum anisotropy in the final state distributions of particles → the second-order coefficient of the Fourier expansion is referred to as elliptic flow

The elliptic flow is expected to induce a vorticity component along the beam axis with a quadrupole structure in the transverse plane → due to the spin-orbit coupling, this is expected to lead to a longitudinal component of particle spin polarization

S. Voloshin and T. Niida, Phys. Rev. C 94 (2016) 021901(R)

Studying QGP with hyperon polarization

The polarization along the beam axis P_z is sensitive to:

- the **bulk viscosity** ζ/s of the QGP at the LHC energies \rightarrow bulk viscosity can change the sign of the polarization
- the contribution from **shear-induced polarization (SIP)**, whose origin is the **motion of particles in anisotropic fluid**, and which competes with the effect of thermal vorticity

Experimental technique for hyperon polarization measurements

The polarization can be experimentally measured via **parity violating weak decays** like $\Lambda \rightarrow p\pi$, in which the daughter baryon is preferentially emitted in the direction of the spin of the hyperon.

The angular distribution of protons in the Λ rest frame is:

 $4\pi \frac{dN}{d\Omega^*} = 1 + \alpha_{\Lambda} P_{\Lambda} \cos \theta^*$

 $\alpha_{\Lambda} = \Lambda$ decay parameter $P_{\Lambda} = \Lambda$ polarization

Λ Longitudinal Polarization:

 θ_p^* : polar angle of the daughter proton in the Λ rest-frame

detector acceptance term

Experimental technique for hyperon polarization measurements

The polarization can be experimentally measured via **parity violating** weak decays like $\Lambda \rightarrow p\pi$, in which the daughter baryon is preferentially emitted in the direction of the spin of the hyperon.

The angular distribution of protons in the Λ rest frame is:

 $4\pi \frac{dN}{d\Omega^*} = 1 + \alpha_{\Lambda} P_{\Lambda} \cos \theta^*$

 $\alpha_{\Lambda} = \Lambda$ decay parameter $P_{\Lambda} = \Lambda$ polarization

A LONGITUDINAL POLARIZATION:

 θ_{p}^{*} : polar angle of the daughter proton in the Λ rest-frame $P_{\rm z} = \frac{\langle \cos \theta_{\rm p}^* \rangle}{\alpha_{\rm A} \langle \cos^2 \theta_{\rm r}^* \rangle}$ detector acceptance term $P_{z,s2} = \frac{\langle P_z \sin 2(\varphi_{\Lambda} - \Psi_2) \rangle}{R_{\Psi_2}} \qquad \text{second-order Fourier sine coefficient}$

second-order event plane resolution

Experimental technique for hyperon polarization measurements

The polarization can be experimentally measured via **parity violating weak decays** like $\Lambda \rightarrow p\pi$, in which the daughter baryon is preferentially emitted in the direction of the spin of the hyperon.

The angular distribution of protons in the Λ rest frame is:

 $4\pi \frac{dN}{d\Omega^*} = 1 + \alpha_{\Lambda} P_{\Lambda} \cos \theta^*$

 $\alpha_{\Lambda} = \Lambda$ decay parameter $P_{\Lambda} = \Lambda$ polarization

A LONGITUDINAL POLARIZATION:

 $P_{z,s3} = \frac{\langle P_z \sin 3(\varphi_{\Lambda} - \Psi_3) \rangle}{R_{\Psi_3}} \qquad \text{third-order Fourier sine coefficient}}$ third-order event plane resolution

Experimental technique for hyperon polarization measurements

The polarization can be experimentally measured via **parity violating weak decays** like $\Lambda \rightarrow p\pi$, in which the daughter baryon is preferentially emitted in the direction of the spin of the hyperon.

The angular distribution of protons in the Λ rest frame is:

 $4\pi \frac{dN}{d\Omega^*} = 1 + \alpha_{\Lambda} P_{\Lambda} \cos \theta^*$

 $\alpha_{\Lambda} = \Lambda$ decay parameter $P_{\Lambda} = \Lambda$ polarization

Ξ Longitudinal Polarization:

Ξ longitudinal polarization $P_{z,s2}^{\Xi}$ is obtained by measuring the polarization of the **daughter Λ** produced in the decay Ξ⁻ → Λπ⁻+ *c.c.*, where the Λ inherits $C_{\Xi\Lambda}$ = 92.5% [1] of Ξ polarization

$$P_{z}^{\Xi} = \frac{\langle \cos \theta_{p}^{*} \rangle}{C_{\Xi\Lambda} \alpha_{\Lambda} \langle \cos^{2} \theta_{p}^{*} \rangle} \qquad P_{z,s2}^{\Xi} = \frac{\langle P_{z}^{\Xi} \sin 2(\varphi_{\Xi} - \Psi_{2}) \rangle}{R_{\Psi_{2}}}$$

[1] PDG, Phys. Rev. D 110, 030001 (2024)

ALICE at the LHC in Run 3

..........

Upgraded TPC JINST 16, P03022 (2021) Main tracking detector, PID (dE/dx)

- MWPCs replaced with GEMs
- Continuous readout up to interaction rate of 50 kHz in Pb-Pb collisions

Upgraded ITS NIM 1032, 166632 (2022)

Tracking, vertexing

- 7 layers of silicon detectors with reduced material budget
- First layer closer to the beam pipe (L0 at 22 mm)

New O² framework CERN-LHCC-2015-006, ALICE-TDR-019

- Common **O**nline-**O**ffline computing system
- Process data throughput x 100 wrt Run 2

07/07/2025

Chiara De Martin – EPS 2025

7/17

Identification of Λ and Ξ

 Λ and Ξ candidates are identified via invariant mass analysis after applying topological and kinematic selections to the variables describing their weak decays:

> $\Lambda \rightarrow p\pi^-$ (and *c.c.*) $\Xi^- \rightarrow \Lambda \pi^- \rightarrow p\pi^- \pi^-$ (and *c.c.*)

 The application of a **boosted decision tree** algorithm guarantees a Ξ sample purity S/(S+B) > 0.95 across all centrality classes

ALI-PERF-597758

Longitudinal polarization of Λ in Run 3

The Λ invariant mass distributions are fit with:

- a Gaussian to describe the signal
- a second degree polynomial to describe the background (dotted black line)

 $P_{z,s2}$ is estimated as **a function of the invariant mass** of the Λ , in order to account for combinatorial background contamination

$P_{_{Z,S2}}$ \mathcal{P}_{z,s^2} RUN 2 0.006 **ALICE Preliminary ALICE Preliminary** RUN 3 0.005 $p_{_{ m T}}$ > 0.5 GeV/c30-50% 0.005 $\Lambda + \overline{\Lambda}, |y| < 0.5$ 0.004 $\Lambda + \overline{\Lambda}, |y| < 0.5$ 0.004 Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV **RUN** 2 Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV 0.003 Pb-Pb $\sqrt{s_{NN}}$ = 5.36 TeV **RUN** 3 Pb–Pb $\sqrt{s_{NN}}$ = 5.36 TeV 0.003 0.002 0.002 0.001 0.001 10 20 50 70 80 40 60 2 5 $p_{_{T}}$ (GeV/c) Centrality (%) ALI-PREL-597366 ALI-PREL-597371

• P_{z,s2} increases from central to peripheral collisions due to increasing system anisotropy, and mildly increases with p_T

Longitudinal polarization of Λ in Run 3

• Run 3 results are compatible with Run 2 ones and have smaller statistical and systematic uncertainties, thanks to the x20 data sample ($\sim 6 \times 10^9$ collisions)

NEW!

Chiara De Martin – EPS 2025

Comparison to model predictions

- The comparison with STAR measurement shows a weak collision energy dependence
- **3+1 D hydro model MUSIC + AMPT initial conditions** predicts correct sign polarisation if shear-induced polarisation is included and the Λ inherits quark s polarisation at the hadronisation stage [1]

[1] B. Fu et al., Phys. Rev. Lett. 127 (2021) 142301

Comparison to model predictions

 Good agreement between data and model [1] including SIP and assuming a temperature dependent bulk viscosity ζ/s (parametrization III) and an isothermal hadronisation hypersurface

07/07/2025

The polarization induced by the triangular flow is measured for the first time at the LHC energies
 → it helps identify the contribution from SIP, which is expected to be different for different harmonics

Chiara De Martin – EPS 2025

13/17

Λ polarization induced by triangular flow

- The third-order polarization P_{z,s3} is compatible with the second-order polarization, despite the triangular flow being smaller than the elliptic flow → comparison to model predictions needed to interpret these results
- With 2024 and 2025 data, the measurement of polarization induced by higher harmonic flow will be possible

Longitudinal polarization of Ξ in Run 3

The first measurement of Ξ longitudinal polarization in Pb–Pb collisions was performed using a sample of $\sim 6 \times 10^9$ Pb–Pb collisions collected during the LHC Run 3 in 2023

The Ξ longitudinal polarization shows a hint of increase from central to peripheral collisions and is compatible with Λ one, confirming the spin hierarchy $(s_{\Lambda} = s_{\Xi} = 1/2)$

Longitudinal polarization of Ξ in Run 3

The first measurement of Ξ longitudinal polarization in Pb–Pb collisions was performed using a sample of $\sim 6 \times 10^9$ Pb–Pb collisions collected during the LHC Run 3 in 2023

The Ξ longitudinal polarization shows a hint of increase from central to peripheral collisions and is compatible with Λ one, confirming the spin hierarchy $(s_{\Lambda} = s_{\Xi} = 1/2)$

The analysis of 2024 data will allow us:

- to reduce the statistical uncertainty
- to test the spin hierarchy by measuring Ω polarization ($s_{\Omega} = 3/2$)

Summary and outlook

- The longitudinal polarization of Λ induced by elliptic flow was measured with improved precision using Run 3 data, confirming the increasing trend towards more peripheral events
- The **first measurement** at the LHC of Λ **longitudinal polarization** induced by **triangular flow** is compatible with second-order one
- The first measurement of Ξ longitudinal polarization is compatible with Λ one, confirming the spin hierarchy

Further measurements with 2024 data:

- azimuthal angle and $p_{\rm T}$ dependence of Ξ longitudinal polarization
- centrality dependence of Ω longitudinal polarization to test the effect of different spin, mass and strangeness content, and to probe the dynamics of the spin degrees of freedom

Backup

ALICE at the LHC in Run 2

Triggering, event selection, centrality estimation, event plane determination

07/07/2025

Measurement of the event plane

TOC forward detector:

where A_{ch} is the signal amplitude measured in a given TOC channel

The second-order event plane \vec{Q} (T0C) is determined using the

The **event plane resolution** R_{Ψ_2} is measured using the event planes determined with forward and backward tracks in the TPC:

$$Q_x(TPC) = \sum_{Ntracks} p_{T,tr} \cos 2\varphi_{tr} / N_{tracks}$$

$$Q_{y}(TPC) = \sum_{Ntracks} p_{T,tr} \sin 2\varphi_{tr} / N_{tracks}$$

07/07/2025

Resolution **ALICE Performance** Run 3, Pb-Pb $\sqrt{s_{\rm NN}}$ = 5.36 TeV T0C (-3.3 < η < -2.1) and TPC (0.1 < $|\eta|$ < 0.8) 0.8 0.6 0.4 0.2 20 30 40 50 60 70 80 Centrality (%) ALI-PERF-576593 $\frac{\langle Q_{TOC} \cdot Q_{TPCa} \rangle \langle Q_{TOC} \cdot Q_{TPCc} \rangle}{\langle \overline{Q_{TDCa}} \cdot \overline{Q_{TPCc}} \rangle}$ $R_{\Psi_2} =$

Experimental technique for Ξ polarization measurements

Longitudinal polarization of Λ in Run 2

- $P_{z,s2}$ increases with from central to peripheral collisions, likely due to increasing system anisotropy
- The comparison with STAR measurement in Au-Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV shows a **weak collision energy** dependence
- 3+1 D hydro model MUSIC + AMPT initial conditions predicts correct sign polarisation if shear-induced polarisation is included and the hyperon inherits quark s polarisation at the hadronisation stage
 - B. Fu et al., Phys. Rev. Lett. 127 (2021) 142301

ALICE, PRL 128 (2022) 172005 - STAR, PRL 123 (2019)132301 - S. Voloshin and T. Niida, Phys. Rev. C 94 (2016) 021901(R)

sin[n(�-Ψ_n)]} [%] sin[n(þ-Ψ_)]) [%] STAR $\sqrt{s_{NN}} = 200 \text{ GeV}$ Ru+Ru&Zr+Zr, $\Lambda + \overline{\Lambda}$ ★ n=2 20-60% centrality, $\Lambda + \overline{\Lambda} |y| < 1$ ♦ n=3 • Au+Au, n=2 Hydro Ru+Ru, $\eta T/(e+P) = 0.08$ • Ru+Ru&Zr+Zr, n = 2 $n = 2 (\omega_{th} + SIP_{BBP})$ Ru+Ru&Zr+Zr, n = 3 $n=2 (\omega_{th}+SIP_{BBP})$ ideal hydro $n=2 (\omega_{th}+SIP_{LY})$ 0.5 م`^{≈ 0.5⊢} Hydro (ω_{th} +SIP_{BBP}) $\overrightarrow{\mathsf{P}}_{\mathsf{r}}$ $n = 3 (\omega_{th} + SIP_{BBP})$ n = 2 Ru + Run = 3 Ru+Ru STAR $\sqrt{s_{NN}} = 200 \text{ GeV}$ $0.5 < p_{\tau} < 6 \text{ GeV}/c, |y| < 1 \quad \alpha_{\Lambda} = -\alpha_{\tau} = 0.732 \pm 0.014$ $\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}} = 0.732 \pm 0.014$ 20 40 60 80

Second- and third-order Λ polarization at RHIC

• The third-order polarization seems to increase towards peripheral collisions as the second-order one

Centrality [%]

- The $p_{\rm T}$ trend is similar to the elliptic and triangular flow \rightarrow supports the picture of anisotropic-flow-driven polarization
- The calculations from [1] describe the data fairly well except for peripheral collisions and at high $p_{
 m T}$

[1] Phys. Lett. B 820, 136519 (2021)

*p*_{_} [GeV/*c*]

ALICE

Chiara De Martin – EPS 2025

Studying QGP with hyperon polarization

ALICE

The polarization along the beam axis is sensitive to:

- the contribution from shear-induced polarization (SIP), whose origin is the motion of particles in anisotropic fluid, and which competes with the effect of thermal vorticity
- the dynamics of the spin degrees of freedom

- The SIP contribution competes with thermal vorticity effects
- SIP contribution prevails in the scenario that Λ inherits the strange quark spin polarisation at the hadronisation stage \rightarrow qualitative agreement with data (correct polarization sign)

Comparison to model predictions

- Good agreement between data and models [1] if SIP is included and the hadronisation hypersurface is isothermal
- The two predictions agree with each other → longitudinal polarization is not sensitive to the initial longitudinal velocity at LHC energies (initialised to zero in GLISSANDO, different from zero in superMC)

Comparison to models

 Good agreement between data and model [1] including SIP and assuming a temperature dependent bulk viscosity ζ/s and an isothermal hadronisation hypersurface

[1] A. Palermo et al. EPJC 84, 920 (2024)

ALICE