

Production and properties of hypernuclei with ALICE

Carolina Reetz for the ALICE Collaboration

EPS-HEP 2025 Marseille 2025-07-07

Hypernuclei

Nº Nº

• Poorly known bound states of nuclei and strange baryons (hyperons)

 $^{4}_{\Lambda}H$

n

р

n

<u>Mainz hypernuclear database</u>

D. Logoteta et al., Eur. Phys. J. A 55, 207 (2019)
 D. Lonardoni et al., Phys. Rev. Lett. 114, 092301 (2019)

р

р

n

Hypernuclei

- Poorly known bound states of nuclei and strange baryons (hyperons)
- Unique direct probes for studying the interaction of hyperons with ordinary matter (Λ -N, Λ -N-N)
- Relevant for the physics of neutron stars (NS)
 - Production of hyperons favourable inside the innermost core of NS^{[1][2]}
 - Resulting softening of the equation-of-state (EoS) incompatible with measured heavy NS masses
 - Models introducing Λ -N-N repulsion^[2] describe observed NS masses
 - \rightarrow need for experimental constraints

D. Logoteta et al., Eur. Phys. J. A 55, 207 (2019)
 D. Lonardoni et al., Phys. Rev. Lett. 114, 092301 (2019)

<u>Mainz hypernuclear database</u>

Hypernuclei

ALICE

- Poorly known bound states of nuclei and strange baryons (hyperons)
- Unique direct probes for studying the interaction of hyperons with ordinary matter (Λ-N, Λ-N-N)
- Relevant for the physics of neutron stars (NS)
 - Production of hyperons favourable inside the innermost core of NS^{[1][2]}
 - Resulting softening of the equation-of-state (EoS) incompatible with measured heavy NS masses
 - Models introducing Λ-N-N repulsion^[2] describe observed NS masses
 → need for experimental constraints

The Hypertriton ($^{3}_{\Lambda}$ H)

• Lightest known hypernucleus $m \sim 2.991 \text{ GeV}/c^2$

 $c\tau \sim 7.1 \mathrm{cm}$

- $B_{\Lambda} = 102 \pm 63(\text{stat}) \pm 67(\text{syst})\text{keV}^{[3]}$
- Mesonic charged decay channels: ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-} (BR \cong 0.25^{[4]})$ ${}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-} (BR \cong 0.40^{[4]})$

(Hyper)nucleosynthesis at the LHC

Thermal models (SHM)^[5]

- Hadrons/nuclei emitted from interaction region in **statistical** equilibrium at T_{ch}
- Predict abundances of particle species $(dN/dy \propto e^{-m/T_{ch}})$
- Yield of (hyper)nuclei in central Pb-Pb collisions described by same fit as hadrons
 - \rightarrow Same thermal production temperature $T_{ch} = 155$ MeV (at LHC)
- No dependence on (hyper)nuclei structure

(Hyper)nucleosynthesis at the LHC

Thermal models (SHM)^[5]

- Hadrons/nuclei emitted from interaction region in statistical equilibrium at T_{ch}
- Predict abundances of particle species $(dN/dy \propto e^{-m/T_{ch}})$
- Yield of (hyper)nuclei in central Pb-Pb collisions described by same fit as hadrons
 - \rightarrow Same thermal production temperature $T_{ch} = 155$ MeV (at LHC)

Beai

d

Λ

• No dependence on (hyper)nuclei structure

Coalescence models^{[6][7]}

- Nucleons close in phase-space at kinetic freeze-out can form a nucleus
- Production probability depends on **overlap of nuclear wave functions and phase space of nucleons**
- For A = 3 nuclei: overlap of three nucleons (3-body coalescence) or overlap of A = 2 nucleus with nucleon (2-body coalescence)
- **Powerful description of formation process** → exploit different wave functions

n

р

^{[5] &}lt;u>B. Dönigus, Eur. Phys. J. A 56, 280 (2020)</u>

^[6] Butler et. al., Phys. Rev. 129, 836 (1963)

^{[7] &}lt;u>Sun et. al., Phys. Lett. B 792, 132 (2019)</u>

The ALICE detector in Run 3

• Yield ratio $^{3}_{\Lambda}H/\Lambda$

→ Large separation between SHM and coalescence models at low charged-particle multiplicity

Thermal model^[8]

Independent of object size

 → production suppression due to canonical conservation of
 quantum numbers in small systems

Coalescence model^[7]

Sensitive to interplay between collision system size and spatial expansion of the nucleus wave function
 → production suppression in small systems due to small emission source size and wide ³_ΛH wave-function

Yield ratio $^{3}_{\Lambda}$ H/ Λ

→ Large separation between SHM and coalescence models at low charged-particle multiplicity

Precise measurement in Run 3 pp collisions

• Tension with SHM

 \rightarrow strong constraint on SHM configuration

Coalescence describes ³_AH suppression in pp collisions
 → nuclear size seems to matter at low charged-particle multiplicity

First $p_{\rm T}$ - differential measurement of $^3_{\Lambda}{\rm H}$ spectrum in pp collisions

- **Coalescence:** $p_{\rm T}$ -dependence of emission source size
 - \rightarrow reduction of source size at high $p_{\rm T}$
 - → suppression of ${}^{3}_{\Lambda}$ H yield (extended wave-function)
 - → measurement of $p_{\rm T}$ -differential production ratios allows to differentiate between thermal production and coalescence^[9]

First $p_{\rm T}$ - differential measurement of $^3_{\Lambda}{\rm H}$ spectrum in pp collisions

- Coalescence: $p_{\rm T}$ -dependence of emission source size
 - \rightarrow reduction of source size at high $p_{\rm T}$
 - → suppression of ${}^{3}_{\Lambda}$ H yield (extended wave-function)
 - \rightarrow measurement of $p_{\rm T}$ -differential production ratios allows to differentiate between thermal production and coalescence^[9]
- Measurement of anti-matter via $\overline{{}^{3}_{\Lambda}H} \rightarrow \overline{{}^{3}He} + \pi^{+}$ decay channel
- New advanced coalescence model (ToMCCA)^[10]
 → coalescence afterburner employing realistic ³_ΛH wave function (Congleton or Gaussian)
 → first ³_ΛH p_T-spectrum prediction
 - → Good data description using Congleton wave function
- Allows to analyse the hypertriton wave-function

Mixed event distributions

Hypertriton three-body decay measurement

- Background estimation with event mixing technique
 - Invariant mass analysis of same event (SE) and mixed event (ME) triplets for background estimation

Fully uncorrelated + uncorrelated Λ-d background

Hypertriton three-body decay measurement

- Background estimation with event mixing technique
 - Invariant mass analysis of same event (SE) and mixed event (ME) triplets for background estimation
- Signal yield extraction with simultaneous background fit to SE and ME invariant mass spectra

Same event distribution

Carolina Reetz – Hypernuclei with ALICE – EPS-HEP 2025

Hypertriton three-body decay measurement

- Background estimation with event mixing technique
 - Invariant mass analysis of same event (SE) and mixed event (ME) triplets for background estimation
- Signal yield extraction with simultaneous background fit to SE and ME invariant mass spectra

First reconstruction of ${}^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$ in ALICE

Measurement of R₃ is feasible at LHC in Run 3 pp collisions

Strangeness tracking

ALICE

Strangeness tracking technique

- New Inner Tracking System (ITS2)
 - 7 silicon layers based on Monolithic Active Pixel Sensors (MAPS)
 - Innermost layers close to interaction point (22.4 mm)
- Improved vertex reconstruction via combination of
 - direct detection of ${}^{3}_{\Lambda}$ H tracklet in Inner Tracking System (ITS2)
 - vertex information of topological reconstruction from weak decay daughter tracks

Strangeness tracking techniqueNew Inner Tracking System (ITS2)

- 7 silicon layers based on Monolithic Active Pixel Sensors (MAPS)
- Innermost layers close to interaction point (22.4 mm)
- Improved vertex reconstruction via combination of

Strangeness tracking

- direct detection of ${}^{3}_{\Lambda}$ H tracklet in Inner Tracking System (ITS2)
- vertex information of topological reconstruction from weak decay daughter tracks

Performance

• Improved pointing resolution (DCA_{xy} to PV) by factor ~ 8

Strangeness tracking

ALICE

Strangeness tracking technique

- New Inner Tracking System (ITS2)
 - 7 silicon layers based on Monolithic Active Pixel Sensors (MAPS)
 - Innermost layers close to interaction point (22.4 mm)
- Improved vertex reconstruction via combination of
 - direct detection of ${}^{3}_{\Lambda}$ H tracklet in Inner Tracking System (ITS2)
 - vertex information of topological reconstruction from weak decay daughter tracks

Performance

- **Improved pointing resolution** (DCA_{xy} to PV) by factor ~ 8
- Additional background from Λ-d correlation in three-body decay channel
 - \rightarrow expected to be suppressed by strangeness tracking
- Tracked $^{3}_{\Lambda}$ H visible in Run 3 pp collisions

→ plan to apply technique in three-body analysis for additional background suppression

Hypertriton production in Run 2 Pb-Pb collisions

Hypertriton production in Run 2 Pb-Pb collisions

- First measurements of A = 4 (anti)hypernuclei yields at the LHC
 - ${}^{4}_{\Lambda}\text{H} \rightarrow {}^{4}\text{He} + \pi^{-} + \text{c. c.}$
 - ${}^{4}_{\Lambda}\text{He} \rightarrow {}^{3}\text{He} + p + \pi^{-} + c.c.$
- First ever signal of $\frac{4}{\Lambda}$ He

[15] ALICE, Phys. Rev. Lett. 134, 162301 (2025)

A = 4 hypernuclei in Run 2 Pb-Pb collisions

Summary

Hypertriton production in small collision systems

- First $p_{\rm T}$ differential measurement of ${}^3_{\Lambda}{\rm H}$ in pp collisions
 - Good description by new advanced coalescence model
- First reconstruction of $^3_\Lambda H \to d + p + \pi^-$ in ALICE
 - Measurement of R_3 is feasible at LHC in Run 3 pp collisions
 - Constraint for ${}^{3}_{\Lambda}$ H branching ratios and properties
 - Strangeness tracking: New powerful tool for reconstruction of weakly decaying charged particles containing strangeness, including hypernuclei

Multiplicity dependence of $^3_{\Lambda}\mathrm{H}$ production in Pb-Pb collisions

• ${}_{\Lambda}^{3}$ H/ 3 He yield suppression at lower charged particle multiplicities well described by coalescence model for (hyper)nuclei production

A = 4 hypernuclei production in Pb-Pb collisions

- First measurements of A = 4 (anti)hypernuclei yields at the LHC
 - SHM successful to describe more compact hypernuclei production
 - Provide test for dependence of the spin-degeneracy of the production models

Backup

Hypertriton three-body decay measurement

- Exact measurements of all $^{3}_{\Lambda}$ H decay modes and their BRs are missing
- Additional experimental constraint to ${}^{3}_{\Lambda}$ H properties via **measurement of ratio of production rates:**

$$R_3 \approx \frac{\Gamma(^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-})}{\Gamma(^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}) + \Gamma(^{3}_{\Lambda}H \rightarrow d + p + \pi^{-})}$$

Decay reconstruction

- 1. Daughter track identification with specific energy loss and time-of-flight
- 2. Reconstruction of **displaced decay vertex**
- 3. Combinatorial background suppression via topological selections

Hypertriton production in Run 2 Pb-Pb collisions

- First measurement of $p_{\rm T}$ -differential ³_AH production in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$
- Combined Blast-Wave fit to d, t, ³He, and $^{3}_{\Lambda}$ H

→ fit temperature and velocity profiles compatible with the ones obtained from fit to ordinary light nuclei only (d, t, ³He, ⁴He)^[16]

> Hint for **common kinetic freeze-out surface** for hypernuclei and ordinary nuclei produced in Pb-Pb collisions

Search for exotic bound states in Run 3 Pb-Pb

- Search for Ann bound state in Run 3 Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.36 \text{ TeV}$
- Measurement of $\Lambda nn \rightarrow {}^{3}H + \pi^{-}$ decay
- No significant structure found in reconstructed invariant mass spectrum in data
- Upper limit for expected yield is set

Neutron stars equation of state

- Production of hyperons favourable inside the innermost core of NSs
- Softening of the EoS incompatible with measured heavy NSs
- Introduction of Λ-N-N repulsion could explain observed NS masses

Hypertriton structure: Λ -separation energy

 $c\tau \sim 7.7$ cm

A-separation energy $B_{\Lambda} = m(d) + m(\Lambda) - m({}^{3}_{\Lambda}H)$

- Reflects extension of the $^{3}_{\Lambda}$ H wave function •
- Probe for Y-N interaction •

 \rightarrow direct measurement via correlation functions with femtoscopic method and scattering experiments (only N-N) \rightarrow Indirect measurement via properties of bound hypernuclei

- Latest ALICE measurement (2023) [1]: •
 - $B_{\Lambda} = 102 \pm 63(\text{stat}) \pm 67(\text{syst})\text{keV}$
 - \rightarrow supports loosely bound nature of $^{3}_{\Lambda}$ H
 - \rightarrow compatible with results from

p- Λ correlation measurements

Hypertriton structure: Lifetime

$^{3}_{\Lambda}$ H Lifetime

- Low B_{Λ} implies only small modification of Λ wave function inside hypernucleus
- Lifetime close to Λ lifetime is expected
- Indicates shallow Y-N interaction

The ALICE detector in Run 2

